Skip to main content
Log in

The Effect of Cryogenic Mechanical Alloying and Milling Duration on Powder Particles’ Microstructure of an Oxide Dispersion Strengthened FeCrMnNiCo High-Entropy Alloy

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Oxide dispersion strengthened materials are commonly used for high-temperature applications. Among other possibilities, these oxides are mostly introduced by mechanical alloying comprising cold welding and fracturing of powders by high-impact loads during milling. However, despite their outstanding high-temperature performance, these materials are still not established because of their laborious and thus expensive processing. Therefore, to improve mechanical alloying’s efficiency, the effect of lower milling temperatures is investigated on an oxide-dispersion strengthened high-entropy-alloy in the proposed study. To this end, prealloyed FeCrMnNiCo powders were milled together with yttria at cryogenic and room temperature by using a novel attritor cryomill. Powders milled at both temperatures were subsequently compared regarding their macroscopic morphology, amount and size distribution of detectable yttria as well as defect structure by means of high-resolution scanning electron microscopy and X-ray diffraction, respectively. Investigations showed a significant decrease of powder particle size and an insignificant influence on their aspect-ratio at cryogenic conditions. Furthermore, the phase fraction of detectable yttria got reduced by cryomilling, indicating increased dissolution or at least refinement. Additionally, a higher full width at half maximum accompanied by increased stacking fault probability of the fcc FeCrMnNiCo matrix gained by X-ray diffraction measurements suggests an improved milling efficiency during cryomilling intensified by higher defect density as well as strength of FeCrMnNiCo powders.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Rolls-Royce: The Jet Engine, 5th ed. Rolls-Royce, London, 1996.

    Google Scholar 

  2. M.H. Tsai and J.W. Yeh: Mater. Res. Lett., 2014, vol. 2, pp. 107–23. https://doi.org/10.1080/21663831.2014.912690.

    Article  CAS  Google Scholar 

  3. D.B. Miracle and O.N. Senkov: Acta Mater., 2017, vol. 122, pp. 448–511. https://doi.org/10.1016/j.actamat.2016.08.081.

    Article  CAS  Google Scholar 

  4. M. Naeem, H. He, S. Harjo, T. Kawasaki, F. Zhang, B. Wang, S. Lan, Z. Wu, Y. Wu, Z. Lu, C.T. Liu, and X.L. Wang: Scripta Mater., 2020, vol. 188, pp. 21–5. https://doi.org/10.1016/j.scriptamat.2020.07.004.

    Article  CAS  Google Scholar 

  5. S. Huang, W. Li, S. Lu, F. Tian, J. Shen, E. Holmström, and L. Vitos: Scripta Mater., 2015, vol. 108, pp. 44–7. https://doi.org/10.1016/j.scriptamat.2015.05.041.

    Article  CAS  Google Scholar 

  6. K.V.S. Thurston, A. Hohenwarter, G. Laplanche, E.P. George, B. Gludovatz, and R.O. Ritchie: Intermetallics., 2019, https://doi.org/10.1016/j.intermet.2019.04.012.

    Article  Google Scholar 

  7. G. Laplanche, A. Kostka, O.M. Horst, G. Eggeler, and E.P. George: Microstructure evolution and critical stress for twinning in the CrMnFeCoNi high-entropy alloy. Acta Mater., 2016, vol. 118, pp. 152–63. https://doi.org/10.1016/j.actamat.2016.07.038.

    Article  CAS  Google Scholar 

  8. F. Otto, A. Dlouhý, C. Somsen, H. Bei, G. Eggeler, and E.P. George: Acta Mater., 2013, vol. 61, pp. 5743–55. https://doi.org/10.1016/j.actamat.2013.06.018.

    Article  CAS  Google Scholar 

  9. Y.H. Wang, Z.F. Zhang, S.J. Sun, H.J. Yang, Y.Z. Tian, H.R. Lin, and X.G. Dong: Mater. Sci. Eng. A., 2017, vol. 712, pp. 603–7. https://doi.org/10.1016/j.msea.2017.12.022.

    Article  CAS  Google Scholar 

  10. J.H. Kim, K.R. Lim, J.W. Won, Y.S. Na, and H.S. Kim: Mater. Sci. Eng. A., 2018, vol. 712, pp. 108–13. https://doi.org/10.1016/j.msea.2017.11.081.

    Article  CAS  Google Scholar 

  11. N. Stepanov, M. Tikhonovsky, N. Yurchenko, D. Zyabkin, M. Klimova, S. Zherebtsov, A. Efimov, and G. Salishchev: Intermetallics., 2015, vol. 59, pp. 8–17. https://doi.org/10.1016/j.intermet.2014.12.004.

    Article  CAS  Google Scholar 

  12. O. Bouaziz: Scripta Mater., 2012, vol. 66, pp. 982–5. https://doi.org/10.1016/j.scriptamat.2011.11.029.

    Article  CAS  Google Scholar 

  13. F. Bergner, I. Hilger, J. Virta, J. Lagerbom, G. Gerbeth, S. Connolly, Z. Hong, P.S. Grant, and T. Weissgärber: Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 2016, vol. 47A, pp. 5313–24. https://doi.org/10.1007/s11661-016-3616-2.

    Article  CAS  Google Scholar 

  14. B. Gwalani, R.M. Pohan, O.A. Waseem, T. Alam, S.H. Hong, H.J. Ryu, and R. Banerjee: Scripta Mater., 2019, vol. 162, pp. 477–81. https://doi.org/10.1016/j.scriptamat.2018.12.021.

    Article  CAS  Google Scholar 

  15. H. Hadraba, Z. Chlup, A. Dlouhy, F. Dobes, P. Roupcova, M. Vilemova, and J. Matejicek: Mater. Sci. Eng. A., 2017, vol. 689, pp. 252–6. https://doi.org/10.1016/j.msea.2017.02.068.

    Article  CAS  Google Scholar 

  16. F. Dobeš, H. Hadraba, Z. Chlup, A. Dlouhý, M. Vilémová, and J. Matějíček: Mater. Sci. Eng. A., 2018, vol. 732, pp. 99–104. https://doi.org/10.1016/j.msea.2018.06.108.

    Article  CAS  Google Scholar 

  17. S. Chung, B. Lee, S.Y. Lee, C. Do, and H.J. Ryu: J. Mater. Sci. Technol., 2021, vol. 85, pp. 62–75. https://doi.org/10.1016/j.jmst.2020.11.081.

    Article  Google Scholar 

  18. C. Suryanarayana: Mechanical Alloying and Milling, Marcel Dekker, New York, 2004.

    Book  Google Scholar 

  19. D.B. Witkin and E.J. Lavernia: Prog. Mater. Sci., 2006, vol. 51, pp. 1–60. https://doi.org/10.1016/j.pmatsci.2005.04.004.

    Article  CAS  Google Scholar 

  20. H. Wen, T.D. Topping, D. Isheim, D.N. Seidman, and E.J. Lavernia: Acta Mater., 2013, vol. 61, pp. 2769–82. https://doi.org/10.1016/j.actamat.2012.09.036.

    Article  CAS  Google Scholar 

  21. M.K. Miller: Microsc. Res. Tech., 2006, vol. 69, pp. 359–65. https://doi.org/10.1002/jemt.20291.

    Article  CAS  Google Scholar 

  22. G. Ressel, D. Holec, A. Fian, F. Mendez-Martin, and H. Leitner: Appl. Phys. A Mater. Sci. Process., 2014, vol. 115, pp. 851–8. https://doi.org/10.1007/s00339-013-7877-y.

    Article  CAS  Google Scholar 

  23. G. Ressel, P. Parz, S. Primig, H. Leitner, H. Clemens, and W. Puff: J. Appl. Phys., 2014, vol. 115, pp. 1–8. https://doi.org/10.1063/1.4869787.

    Article  CAS  Google Scholar 

  24. M.J. Alinger, S.C. Glade, B.D. Wirth, G.R. Odette, T. Toyama, Y. Nagai, and M. Hasegawa: Mater. Sci. Eng. A., 2009, vol. 518, pp. 150–7. https://doi.org/10.1016/j.msea.2009.04.040.

    Article  CAS  Google Scholar 

  25. N. Oono and S. Ukai: Mater. Trans., 2018, vol. 59, pp. 1651–8. https://doi.org/10.2320/matertrans.M2018110.

    Article  CAS  Google Scholar 

  26. L.L. Hsiung, M.J. Fluss, S.J. Tumey, B.W. Choi, Y. Serruys, F. Willaime, and A. Kimura: Phys. Rev. B Condens. Matter Mater. Phys., 2010, vol. 82, pp. 1–13. https://doi.org/10.1103/PhysRevB.82.184103.

    Article  CAS  Google Scholar 

  27. M.P. Phaniraj, D.I. Kim, J.H. Shim, and Y.W. Cho: Acta Mater., 2009, vol. 57, pp. 1856–64. https://doi.org/10.1016/j.actamat.2008.12.026.

    Article  CAS  Google Scholar 

  28. M. Kiritani, Y. Satoh, Y. Kizuka, K. Arakawai, Y. Ogasawara, S. Arai, and Y. Shimomura: Philos. Mag. Lett., 1999, vol. 79, pp. 797–804. https://doi.org/10.1080/095008399176616.

    Article  CAS  Google Scholar 

  29. X.L. Wu, B. Li, and E. Ma: Phys. Lett., 2007, vol. 91, pp. 1–4. https://doi.org/10.1063/1.2794416.

    Article  CAS  Google Scholar 

  30. L. Zhang, C. Lu, G. Michal, G. Deng, and K. Tieu: Scripta Mater., 2017, vol. 136, pp. 78–82. https://doi.org/10.1016/j.scriptamat.2017.04.019.

    Article  CAS  Google Scholar 

  31. S. Kojima, Y. Satoh, H. Taoka, I. Ishida, T. Yoshiie, M. Kiritani, and M. Kiritani: Philos. Mag. A Phys. Condens. Matter Struct. Defects Mech. Prop., 1989, vol. 59, pp. 519–32. https://doi.org/10.1080/01418618908229782.

    Article  CAS  Google Scholar 

  32. J. Schiotz, T. Leffers, and B.N. Singh: Philos. Mag. Lett., 2001, vol. 81, pp. 301–9. https://doi.org/10.1080/09500830110041657.

    Article  CAS  Google Scholar 

  33. J. Svoboda, W. Ecker, V.I. Razumovskiy, G.A. Zickler, and F.D. Fischer: Prog. Mater. Sci., 2019, https://doi.org/10.1016/j.pmatsci.2018.10.001.

    Article  Google Scholar 

  34. F.D. Fischer, J. Svoboda, and E. Kozeschnik: Model. Simul. Mater. Sci. Eng., 2013, https://doi.org/10.1088/0965-0393/21/2/025008.

    Article  Google Scholar 

  35. J.H. Kim and C.H. Park: J. Alloys Compd., 2014, vol. 585, pp. 69–74. https://doi.org/10.1016/j.jallcom.2013.09.085.

    Article  CAS  Google Scholar 

  36. J.H. Kim, T.S. Byun, E. Shin, J.B. Seol, S. Young, and N.S. Reddy: J. Alloys Compd., 2015, vol. 651, pp. 363–74. https://doi.org/10.1016/j.jallcom.2015.08.100.

    Article  CAS  Google Scholar 

  37. NIST: Line Position and Line Shape Standard for Powder Diffraction (Lanthanum Hexaboride Powder), Natl. Inst. Stand. Technol. US Dep. Commer. Gaithersburg, MD. (2015) 1–5. https://www-s.nist.gov/srmors/certificates/660C.pdf?CFID=35608137&CFTOKEN=7e602cd95cb32152-D56C3582-CDD9-D727-1A32D16FDB2CF208.

  38. B.E. Warren: XProg. Met. Phys., 1959, vol. 8, pp. 147–202. https://doi.org/10.1016/0502-8205(59)90015-2.

    Article  CAS  Google Scholar 

  39. T. Ungár: Scripta Mater., 2004, vol. 51, pp. 777–81. https://doi.org/10.1016/j.scriptamat.2004.05.007.

    Article  CAS  Google Scholar 

  40. J. Zbiral: Metall. Mater. Trans. A., 1994, vol. 27A, pp. 1371–7.

    Google Scholar 

  41. D. Wimler, S. Kardos, J. Lindemann, H. Clemens, and S. Mayer: Prakt. Metallogr. Metallogr., 2018, vol. 55, pp. 620–36. https://doi.org/10.3139/147.110547.

    Article  Google Scholar 

  42. S. Vock, B. Klöden, A. Kirchner, T. Weißgärber, and B. Kieback: Prog. Addit. Manuf., 2019, vol. 4, pp. 383–97. https://doi.org/10.1007/s40964-019-00078-6.

    Article  Google Scholar 

  43. J. Zbiral: Charakterisierung von Verteilungs-, Legierungs und Homogenisierungsprozessen beim mechanischen Legieren, Technische Universität Wien, Vienna, 1990.

    Google Scholar 

  44. K.H. Chung, J. He, D.H. Shin, and J.M. Schoenung: Mater. Sci. Eng. A., 2003, vol. 356, pp. 23–31. https://doi.org/10.1016/S0921-5093(02)00833-X.

    Article  CAS  Google Scholar 

  45. M. Li, Y. Guo, H. Wang, J. Shan, and Y. Chang: Intermetallics., 2020, vol. 123, 106819. https://doi.org/10.1016/j.intermet.2020.106819.

    Article  CAS  Google Scholar 

  46. Y. Guo, M. Li, C. Chen, P. Li, W. Li, Q. Ji, Y. Zhang, and Y. Chang: Intermetallics., 2020, vol. 117, 106674. https://doi.org/10.1016/j.intermet.2019.106674.

    Article  CAS  Google Scholar 

  47. R.M. Pohan, B. Gwalani, J. Lee, T. Alam, J.Y. Hwang, H.J. Ryu, R. Banerjee, and S.H. Hong: Mater. Chem. Phys., 2018, vol. 210, pp. 62–70. https://doi.org/10.1016/j.matchemphys.2017.09.013.

    Article  CAS  Google Scholar 

  48. K.H. Chung, R. Rodriguez, E.J. Lavernia, and J. Lee: Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 2002, vol. 33A, pp. 125–34. https://doi.org/10.1007/s11661-002-0011-y.

    Article  CAS  Google Scholar 

  49. S.H. Joo, H. Kato, M.J. Jang, J. Moon, E.B. Kim, S.J. Hong, and H.S. Kim: J. Alloys Compd., 2017, vol. 698, pp. 591–604. https://doi.org/10.1016/j.jallcom.2016.12.010.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support under the scope of the COMET program within the K2 Center “Integrated Computational Material, Process and Product Engineering (IC-MPPE)” (project no. 859480). This program is supported by the Austrian Federal Ministries for Climate Action, Environment, Energy, Mobility, Innovation and Technology (BMK) and for Digital and Economic Affairs (BMDW), represented by the Austrian research funding association (FFG) and the federal states of Styria, Upper Austria and Tyrol.

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Mayer.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted August 17, 2021; accepted November 1, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mayer, M., Ressel, G. & Svoboda, J. The Effect of Cryogenic Mechanical Alloying and Milling Duration on Powder Particles’ Microstructure of an Oxide Dispersion Strengthened FeCrMnNiCo High-Entropy Alloy. Metall Mater Trans A 53, 573–584 (2022). https://doi.org/10.1007/s11661-021-06532-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-021-06532-x

Navigation