Skip to main content
Log in

Nucleotide composition bias of rDNA sequences as a source of phylogenetic artifacts in Basidiomycota—a case of a new lineage of a uredinicolous Ramularia-like anamorph with affinities to Ustilaginomycotina

  • Original Article
  • Published:
Mycological Progress Aims and scope Submit manuscript

Abstract

A Ramularia-like hyphomycete was discovered on uredinia of Phakopsora ampelopsidis on leaves of wild Ampelopsis brevipedunculata and cultivated Parthenocissus tricuspidata in several cities in Taiwan. The micromorphology of this fungicolous fungus is similar to that of species of the genus Ramularia which are mostly plant parasites but some species grow on rust fungi. Analyses of SSU and LSU rDNA and RPB2 gene sequence data and of ultrastructural features observed by scanning and transmission electron microscopy revealed that the fungus represents a novel lineage within the Ustilaginomycotina. The name Quasiramularia phakopsoricola is proposed for this new species in a new genus, a new family, and a new order. Sequence data obtained for ITS1, 5.8S, and ITS2 rDNA, however, did not match to any known fungal lineage. Bioinformatics analyses showed that these sequence data are extremely GC poor, but most probably do not represent a pseudogene. Extreme deviations of GC content can be observed in several lineages of Basidiomycota. Such variations affect the results of phylogenetic analyses and are an important source of artifacts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

All data and materials are provided.

Code availability

Not applicable.

References

  • Aime MC, Matheny PB, Henk DA, Frieders EM, Nilsson RH, Piepenbring M, McLaughlin DJ, Szabo LJ, Begerow D, Sampaio JP (2006) An overview of the higher level classification of Pucciniomycotina based on combined analyses of nuclear large and small subunit rDNA sequences. Mycologia 98:896–905

    CAS  PubMed  Google Scholar 

  • Aime MC, Castlebury LA, Abbasi M, Begerow D, Berndt R, Kirschner R, Marvanová L, Ono Y, Padamsee M, Scholler M, Thines M, Rossman AY (2018) Competing sexual and asexual generic names in Pucciniomycotina and Ustilaginomycotina (Basidiomycota) and recommendations for use. IMA Fungus 9:75–89

    PubMed  PubMed Central  Google Scholar 

  • Antropova AB, Bilanenko EN, Mokeeva VL, Chekunova LN, Kachalkin AV, Shtaer OV, Kamzolkina OV (2014) Report of Quambalaria cyanescens in association with the Birch (Betula pendula). Microbiology 83(5):690–698

    CAS  Google Scholar 

  • Bakhshi M, Zare R, Jafary H (2021) Identification of Acrodontium luzulae and Ramularia coleosporii, two fungicolous fungi on Melampsora hypericorum, the causal agent of Hypericum androsaemum rust. Nova Hedwigia 113(3–4):323–338. https://doi.org/10.1127/nova_hedwigia/2021/0652.

  • Bast J, Parker DJ, Dumas Z, Jalvingh KM, Van Tran P, Jaron KS, Figuet E, Brandt A, Galtier N, Schwander T (2018) Consequences of asexuality in natural populations: insights from stick insects. Mol Biol Evol 35:1668–1677

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bauer R, Oberwinkler F, Vánky K (1997) Ultrastructural markers and systematics in smut fungi and allied taxa. Can J Bot 75:1273–1314

    Google Scholar 

  • Begerow D, Stoll M, Bauer R (2006) A phylogenetic hypothesis of Ustilaginomycotina based on multiple gene analyses and morphological data. Mycologia 98:906–916

    PubMed  Google Scholar 

  • Bengtsson-Palme J, Ryberg M, Hartmann M, Branco S, Wang Z, Godhe A, De Wit P, Sánchez-García M, Ebersberger I, de Sousa F (2013) Improved software detection and extraction of ITS1 and ITS 2 from ribosomal ITS sequences of fungi and other eukaryotes for analysis of environmental sequencing data. Methods Ecol Evol 4:914–919

    Google Scholar 

  • Betancur-R R, Li C, Munroe TA, Ballesteros JA, Ortí G (2013) Addressing gene tree discordance and non-stationarity to resolve a multi-locus phylogeny of the flatfishes (Teleostei: Pleuronectiformes). Syst Biol 62:763–785

    PubMed  Google Scholar 

  • Braun U (1995) A monograph of Ramularia, Cercosporella and allied genera (phytopathogenic hyphomycetes), vol I. IHW-Verlag, Eching, Germany

    Google Scholar 

  • Braun U (1998) A monograph of Ramularia, Cercosporella and allied genera (phytopathogenic hyphomycetes), vol II. IHW-Verlag, Eching, Germany

    Google Scholar 

  • Bromham L, Cowman PF, Lanfear R (2013) Parasitic plants have increased rates of molecular evolution across all three genomes. BMC Evol Biol 13:1–11

    Google Scholar 

  • Coleman AW (2007) Pan-eukaryote ITS2 homologies revealed by RNA secondary structure. Nucl Acids Res 10:3322–3329

    Google Scholar 

  • Collins TM, Fedrigo O, Naylor GJP (2005) Choosing the best genes for the job: the case for stationary genes in genome-scale phylogenetics. Syst Biol 54:493–500

    PubMed  Google Scholar 

  • Costantini M, Alvarez-Valin F, Costantini S, Cammarano R, Bernardi G (2013) Compositional patterns in the genomes of unicellular eukaryotes. BMC Genomics 14:1–12

    Google Scholar 

  • Cruz D, Suárez JP, Kottke I, Piepenbring M, Oberwinkler F (2011) Defining species in Tulasnella by correlating morphology and nrDNA ITS-5.8S sequence data of basidiomata from a tropical Andean forest. Mycol Prog 10:229–238

    Google Scholar 

  • Darriba D, Taboada GL, Doallo R, Posada D (2012) jModelTest 2: more models, new heuristics and parallel computing. Nat Methods 9:772–772

    CAS  PubMed  PubMed Central  Google Scholar 

  • Darty K, Denise A, Ponty Y (2009) Varna: interactive drawing and editing of the RNA secondary structure. Bioinformatics 25:1974–1975

    CAS  PubMed  PubMed Central  Google Scholar 

  • De Beer ZW, Begerow D, Bauer R, Pegg GS, Crous PW, Wingfield MJ (2006) Phylogeny of the Quambalariaceae fam. nov., including important Eucalyptus pathogens in South Africa and Australia. Stud Mycol 55:289–298

    PubMed  PubMed Central  Google Scholar 

  • Ediriweera AN, Karunarathna SC, Xu J, Hyde KD, Mortimer PE (2017) Entoloma mengsongense sp. nov. (Entolomataceae, Agaricales), a remarkable blue mushroom from Yunnan Province. China Turkish Journal of Botany 41:505–515

    CAS  Google Scholar 

  • Fillinger RJ, Anderson MZ (2019) Seasons of change: mechanisms of genome evolution in human fungal pathogens. Infect Genet Evol 70:165–174

    CAS  PubMed  Google Scholar 

  • Foerstner KU, von Mering C, Hooper SD, Bork P (2005) Environments shape the nucleotide composition of genomes. EMBO Rep 6:1208–1213

    CAS  PubMed  PubMed Central  Google Scholar 

  • Foster PG, Hickey DA (1999) Compositional bias may affect both DNA-based and protein-based phylogenetic reconstructions. J Mol Evol 48:284–290

    CAS  PubMed  Google Scholar 

  • Freire MCM, da Silva MR, Zhang X, Almeida ÁMR, Stacey G, de Oliveira LO (2012) Nucleotide polymorphism in the 5.8 S nrDNA gene and internal transcribed spacers in Phakopsora pachyrhizi viewed from structural models. Fungal Genet Biol 49:95–100

    CAS  PubMed  Google Scholar 

  • Gardes M, Bruns TD (1993) ITS primers with enhanced specificity for basidiomycetes–application to the identification of mycorrhizae and rusts. Mol Ecol 2:113–118

    CAS  PubMed  Google Scholar 

  • Glass DJ, Takebayashi N, Olson LE, Taylor DL (2013) Evaluation of the authenticity of a highly novel environmental sequence from boreal forest soil using ribosomal RNA secondary structure modeling. Mol Phylogenet Evol 67:234–245

    CAS  PubMed  Google Scholar 

  • Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59:307–321

    CAS  PubMed  Google Scholar 

  • Haag KL, Pombert J-F, Sun Y, de Albuquerque NRM, Batliner B, Fields P, Lopes TF, Ebert D (2020) Microsporidia with vertical transmission were likely shaped by nonadaptive processes. Genome Biol Evol 12:3599–3614

    CAS  PubMed  Google Scholar 

  • Hammill TC (1973) Fine structure of conidiogenesis in the holoblastic, sympodial Tritirachium roseum. Can J Bot 51:2033–2036

    Google Scholar 

  • Hane JK, Oliver RP (2008) RIPCAL: a tool for alignment-based analysis of repeat-induced point mutations in fungal genomic sequences. BMC Bioinformatics 9:1–12

    Google Scholar 

  • Harpke MP, Peterson A (2008) 5.8S motifs for the identification of pseudogenetic ITS regions. Botany 86:300–305

    CAS  Google Scholar 

  • Hofacker IL, Fontana W, Stadler PF, Bonhoeffer SL, Tacker M, Schuster P (1994) Fast folding and comparison of RNA secondary structures. Monatsh Chem 125:167–188

    CAS  Google Scholar 

  • Hosen MI, Li T-H (2017) First report of Limacella from Bangladesh, with a new species description. Phytotaxa 332:280–286

    Google Scholar 

  • Hunter RL, LaJeunesse TC, Santos SR (2007) Structure and evolution of the rDNA internal transcribed spacer (ITS) region 2 in the symbiotic dinoflagellates (Symbiodinium, Dinophyta). J Phycol 43:120–128

    CAS  Google Scholar 

  • Jobes DV, Thien LB (1997) A conserved motif in the 5.8S ribosomal RNA (rRNA) gene is a useful diagnostic marker for plant internal transcribed spacer (ITS) sequence. Plant Mol Biol Rep 15:326–334

    CAS  Google Scholar 

  • Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS (2017) ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods 14:587–589

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kocot KM, Santos SR (2009) Secondary structural modeling of the second internal transcribed spacer (ITS2) from Pfiesteria-like dinoflagellates (Dinophyceae). Harmful Algae 8:441–446

    CAS  Google Scholar 

  • Kapoor N, Gambhir L, Saxena S (2018) Secondary structure prediction of ITS rRNA region and molecular phylogeny: an integrated approach for the precise speciation of Muscodor species. Annals Microbiol 68:763–772

    CAS  Google Scholar 

  • Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30:772–780

    CAS  PubMed  PubMed Central  Google Scholar 

  • Khodaparast A, Braun U (2005) Ramularia uredinicola – a new species from Iran. Mycotaxon 91:357–359

    Google Scholar 

  • Kirschner R (2009) Cercosporella and Ramularia. Mycologia 101:110–119

    CAS  PubMed  Google Scholar 

  • Kirschner R, Oberwinkler F (2001) Mycoparasitism by three species of Diplococcium (Hyphomycetes). Plant Biol 13:449–454

    Google Scholar 

  • Kirschner R, Braun U, Chen Z-C, Oberwinkler F (2002) Pleurovularia, a new genus of hyphomycetes proposed for a parasite on leaves of Microstegium sp. (Poaceae). Mycoscience 43:15–20

    Google Scholar 

  • Kiss L (2003) A review of fungal antagonists of powdery mildews and their potential as biocontrol agents. Pest Manag Sci 59:475–483

    CAS  PubMed  Google Scholar 

  • Km S-Y, Jung HS (2001) Phylogenetic relationships of the Polyporaceae based on gene sequences of nuclear small subunit ribosomal RNAs. Mycobiol 29:73–79

    Google Scholar 

  • Kolařík M, Vohník M (2018) When the ribosomal DNA does not tell the truth: the case of the taxonomic position of Kurtia argillacea, an ericoid mycorrhizal fungus residing among Hymenochaetales. Fungal Biol 122:1–18

    PubMed  Google Scholar 

  • Kolařík M, Sláviková E, Pažoutová S (2006) The taxonomic and ecological characterisation of the clinically important heterobasiodiomycete Fugomyces cyanescens and its association with bark beetles. Czech Mycol 58(1–2):81–98

    Google Scholar 

  • Kurtzman CP, Robnett CJ (1997) Identification of clinically important ascomycetous yeasts based on nucleotide divergence in the 5′end of the large-subunit (26S) ribosomal DNA gene. J Clin Microbiol 35(5):1216–1223

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu YJ, Whelen S, Hall BD (1999) Phylogenetic relationships among ascomycetes: evidence from an RNA polymerase II subunit. Mol Biol Evol 16:1799–1808

    CAS  PubMed  Google Scholar 

  • Lynch M (2010) Evolution of the mutation rate. Trends Genet 26:345–352

    CAS  PubMed  PubMed Central  Google Scholar 

  • Markham NR, Zuker M (2005) DINAMelt web server for nucleic acid melting prediction. Nucl Acids Res 33:W577–W581. https://doi.org/10.1093/nar/gki591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McCutcheon JP, Moran NA (2012) Extreme genome reduction in symbiotic bacteria. Nat Rev Microbiol 10:13–26

    CAS  Google Scholar 

  • McLean MA, Tirosh I (2011) Opposite GC skews at the 5′and 3′ends of genes in unicellular fungi. BMC Genomics 12:1–10

    Google Scholar 

  • McTaggart A, Prychid C, Bruhl J, Shivas R (2020) The PhyloCode applied to Cintractiellales, a new order of smut fungi with unresolved phylogenetic relationships in the Ustilaginomycotina. Fungal Systematics and Evolution 6:55

    CAS  PubMed  PubMed Central  Google Scholar 

  • Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD, Von Haeseler A, Lanfear R (2020) IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol Biol Evol 37:1530–1534

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mims CW, Richardson EA (1987) An ultrastructural study of the asexual spores of the plant pathogenic fungus Exobasidium vaccinii. Bot Gaz 148(2):228–234

    Google Scholar 

  • Oberwinker F, Bauer R (2018) Ultrastructure in basidiomycetes – requirement for function. In: P. Blanz (ed.): Biodiversity and ecology of fungi, lichens, and mosses. Kerner von Marilaun Workshop 2015 in memory of Josef Poelt. Austrian Academy of Sciences Press, Biosyst Ecol Ser 34:381–418

  • Ordynets A, Scherf D, Pansegrau F, Denecke J, Lysenko L, Larsson K-H, Langer E (2018) Short-spored Subulicystidium (Trechisporales, Basidiomycota): high morphological diversity and only partly clear species boundaries. MycoKeys 35:41–99

    Google Scholar 

  • Peculis BA, Greer CL (1998) The structure of the ITS2-proximal stem is required for pre-rRNA processing in yeast. RNA 4:1610–1622

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pessia E, Popa A, Mousset S, Rezvoy C, Duret L, Marais GA (2012) Evidence for widespread GC-biased gene conversion in eukaryotes. Genome Biol Evol 4(7):675–682

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pons N, Sutton BC, Gay JL (1985) Ultrastructure of conidiogenesis in Cercospora beticola. Trans Br Mycol Soc 85(3):405–416

    Google Scholar 

  • Rambaut A, Drummond AJ, Xie D, Baele G, Suchard MA (2018) Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Syst Biol 67:901–904

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rampersad SN (2014) ITS1, 5.8 S and ITS2 secondary structure modelling for intra-specific differentiation among species of the Colletotrichum gloeosporioides sensu lato species complex. Springerplus 3:1–10

    Google Scholar 

  • Reynolds ES (1963) The use of lead citrate at high pH as an electron opaque stain in electron microscopy. J Cell Biol 17:208–212

    CAS  PubMed  PubMed Central  Google Scholar 

  • Riess K, Schön ME, Ziegler R, Lutz M, Shivas RG, Piątek M, Garnica S (2019) The origin and diversification of the Entorrhizales: deep evolutionary roots but recent speciation with a phylogenetic and phenotypic split between associates of the Cyperaceae and Juncaceae. Org Divers Evol 19:13–30

    Google Scholar 

  • Romiguier J, Cameron SA, Woodard SH, Fischman BJ, Keller L, Praz CJ (2016) Phylogenomics controlling for base compositional bias reveals a single origin of eusociality in corbiculate bees. Mol Biol Evol 33:670–678

    CAS  PubMed  Google Scholar 

  • Romiguier J, Roux C (2017) Analytical biases associated with GC-content in molecular evolution. Front Genet 8:16

    PubMed  PubMed Central  Google Scholar 

  • Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574

    CAS  PubMed  Google Scholar 

  • Rouxel T, Grandaubert J, Hane J, Hoede C, Wouw A, Couloux A, Dominguez Del Angel V, Anthouard V, Bally P, Bourras S, Cozijnsen A, Ciuffetti L, Degrave A, Dilmaghani A, Duret L, Fudal I, Goodwin S, Gout L, Glaser N, Howlett B (2011) Effector diversification within compartments of the Leptosphaeria maculans genome affected by repeat-induced point mutations. Nat Commun 2:202

    PubMed  Google Scholar 

  • Schultz J, Maisel S, Gerlach D, Muller T, Wolf M (2005) A common core of secondary structure on the internal transcribed spacer 2 (ITS2) throughout the Eukaryota. RNA 11:361–364

    CAS  PubMed  PubMed Central  Google Scholar 

  • Selig C, Wolf M, Muller T, Dandekar T, Schultz J (2008) The ITS2 Database II: homology modeling RNA structure for molecular systematic. Nucl Acids Res 36:D377–D380

    CAS  PubMed  Google Scholar 

  • Simpson JA (2000) Quambalaria, a new genus of eucalypt pathogens. Australasian Mycologist 19(2):57–62

    Google Scholar 

  • Spurr AR (1969) A low-viscosity epoxy resin embedding medium for electron microscopy. J Ultrastr Res 26:31–34

    CAS  Google Scholar 

  • Stadler M, Lambert C, Wibberg D, Kalinowski j, Cox RJ, Kolařík M, Kuhnert E, (2020) Intragenomic polymorphisms in the ITS region of high-quality genomes of the Hypoxylaceae (Xylariales, Ascomycota). Mycol Prog 19:235–245

    Google Scholar 

  • Sun L-Y, Sun X, Guo L-D (2018) Capitulocladosporium clinodiplosidis gen. et sp. nov., a hyphomyceteous ustilaginomycete from midge. Mycol Prog 17:307–318

    Google Scholar 

  • Talavera G, Castresana J (2007) Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst Biol 56:564–577

    CAS  PubMed  Google Scholar 

  • Testa AC, Oliver RP, Hane JK (2016) OcculterCut: a comprehensive survey of AT-rich regions in fungal genomes. Genome Biol Evol 8:2044–2064

    PubMed  PubMed Central  Google Scholar 

  • Větrovský T, Baldrian P, Morais D (2018) SEED 2: a user-friendly platform for amplicon high-throughput sequencing data analyses. Bioinformatics 34:2292–2294

    PubMed  PubMed Central  Google Scholar 

  • Větrovský T, Morais D, Kohout P, Lepinay C, Algora C, Awokunle Hollá S, Bahnmann BD, Bílohnědá K, Brabcová V, D’Alò F, Human ZR, Jomura M, Kolařík M, Kvasničková J, Lladó S, López-Mondéjar R, Martinović T, Mašínová T, Meszárošová L, Michalčíková L, Michalová T, Mundra S, Navrátilová D, Odriozola I, Piché-Choquette S, Štursová M, Švec K, Tláskal V, Urbanová M, Vlk L, Voříšková J, Žifčáková L, Baldrian P (2020) GlobalFungi, a global database of fungal occurrences from high-throughput-sequencing metabarcoding studies. Scientific Data 7:228

    PubMed  PubMed Central  Google Scholar 

  • Wei I, Kirschner R (2017) Two fungicolous anamorphic species of Hypomyces s. lat. from Taiwan. Fungal Science 32:15–25

    Google Scholar 

  • Walker J, Bertus AL (1971) Shoot blight of Eucalyptus spp. caused by an undescribed species of Ramularia. Proceedings of the Linnean Society of New South Wales 96(2):108–115 + plates XII and XIII

  • Wang Q-M, Begerow D, Groenewald M, Liu X-Z, Theelen B, Bai F-Y, Boekhout T (2015) Multigene phylogeny and taxonomic revision of yeasts and related fungi in the Ustilaginomycotina. Stud Mycol 81:55–83

    PubMed  PubMed Central  Google Scholar 

  • Wang Q-M, Groenewald M, Takashima M, Theelen B, Han P-J, Liu X-Z, Boekhout T, Bai F-Y (2015) Phylogeny of yeasts and related filamentous fungi within Pucciniomycotina determined from multigene sequence analyses. Stud Mycol 81:27–53

    PubMed  PubMed Central  Google Scholar 

  • Wang Q, Jiang C, Wang C, Chen C, Xu J-R, Liu H (2017) Characterization of the two-speed subgenomes of Fusarium graminearum reveals the fast-speed subgenome specialized for adaption and infection. Front Plant Sci 8:140

    PubMed  PubMed Central  Google Scholar 

  • White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic Press, San Diego, pp 315–322

    Google Scholar 

  • Woolfit M, Bromham L (2003) Increased rates of sequence evolution in endosymbiotic bacteria and fungi with small effective population sizes. Mol Biol Evol 20:1545–1555

    CAS  PubMed  Google Scholar 

  • Woolfit M, Bromham L (2005) Population size and molecular evolution on islands. Proc R Soc B 272:2277–2282

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xia X, Xie Z (2001) DAMBE: software package for data analysis in molecular biology and evolution. J Hered 92:371–373

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Y.-H. Yeh, NTU (Taiwan), for technical assistance with DNA methods in the laboratory and M. Basoglu, Goethe University (Germany), for generous help with TEM. We thank P. Kirk (Index Fungorum) for explaining “automatic typification” above the genus rank.

Funding

The study was supported by the Ministry of Science & Technology, Taiwan (NSC 102–2621–B–008–001–MY3 and MOST 109–2621-B-002–004).

Author information

Authors and Affiliations

Authors

Contributions

Methodology and writing concerning rDNA features such as phylogeny, GC content, and ITS features: Miroslav Kolařík. Formal analysis and investigation particularly of morphology for master thesis: I-Chin Wei. Methodology of electron microscopy: Sung-Yuan Hsieh. Writing—review and editing as well as resources in Germany: Meike Piepenbring. Conceptualization and supervision of study, funding acquisition, collection and deposit of materials, ultrastructure of conidiogenesis, writing the original draft: Roland Kirschner.

Corresponding author

Correspondence to Roland Kirschner.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Section editor: Marc Stadler

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 Datasets used in the phylogenetic analyses presented in Fig. 1 and ESM 4. (RAR 137 KB)

11557_2021_1749_MOESM2_ESM.xlsx

Supplementary file2 Table S1. GC content of ITS1, 5.8S, ITS2, LSU and SSU of Quasiramularia and other sequences from GenBank belonging to Basidiomycota. (XLSX 30837 KB)

11557_2021_1749_MOESM3_ESM.pptx

Supplementary file3 Figure S1. Secondary structure prediction of ITS2 rDNA sequence from Q. phakopsoricola R. Kirschner 4704. (PPTX 334 KB)

11557_2021_1749_MOESM4_ESM.docx

Supplementary file4 Table of DNA sequences used for the phylogenetic analyses and alternative phylogenetic trees. (DOCX 296 KB)

11557_2021_1749_MOESM5_ESM.rar

Supplementary file5 Datasets of rDNA sequences of Quasiramularia and other sequences from GenBank belonging to Basidiomycota used for the GC content calculation (RAR 5508 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kolařík, M., Wei, IC., Hsieh, SY. et al. Nucleotide composition bias of rDNA sequences as a source of phylogenetic artifacts in Basidiomycota—a case of a new lineage of a uredinicolous Ramularia-like anamorph with affinities to Ustilaginomycotina. Mycol Progress 20, 1553–1571 (2021). https://doi.org/10.1007/s11557-021-01749-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11557-021-01749-x

Keywords

Navigation