Skip to main content
Log in

Red-shifted light-harvesting system of freshwater eukaryotic alga Trachydiscus minutus (Eustigmatophyta, Stramenopila)

  • Original article
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

Survival of phototrophic organisms depends on their ability to collect and convert enough light energy to support their metabolism. Phototrophs can extend their absorption cross section by using diverse pigments and by tuning the properties of these pigments via pigment–pigment and pigment–protein interaction. It is well known that some cyanobacteria can grow in heavily shaded habitats by utilizing far-red light harvested with far-red-absorbing chlorophylls d and f. We describe a red-shifted light-harvesting system based on chlorophyll a from a freshwater eustigmatophyte alga Trachydiscus minutus (Eustigmatophyceae, Goniochloridales). A comprehensive characterization of the photosynthetic apparatus of T. minutus is presented. We show that thylakoid membranes of T. minutus contain light-harvesting complexes of several sizes differing in the relative amount of far-red chlorophyll a forms absorbing around 700 nm. The pigment arrangement of the major red-shifted light-harvesting complex is similar to that of the red-shifted antenna of a marine alveolate alga Chromera velia. Evolutionary aspects of the algal far-red light-harvesting complexes are discussed. The presence of these antennas in eustigmatophyte algae opens up new ways to modify organisms of this promising group for effective use of far-red light in mass cultures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Airs R, Temperton B, Sambles C, Farnham G, Skill S, Llewellyn C (2014) Chlorophyll f and chlorophyll d are produced in the cyanobacterium Chlorogloeopsis fritschii when cultured under natural light and near-infrared radiation. FEBS Lett 588:3770–3777

    CAS  PubMed  Google Scholar 

  • Alboresi A, Le Quiniou C, Yadav SKN, Scholz M, Meneghesso A, Gerotto C, Simionato D, Hippler M, Boekema EJ, Croce R, Morosinotto T (2016) Conservation of core complex subunits shaped the structure and function of photosystem I in the secondary endosymbiont alga Nannochloropsis gaditana. New Phytol 213:714–726

    PubMed  PubMed Central  Google Scholar 

  • Andersen RA (2004) Biology and systematics of heterokont and haptophyte algae. Am J Bot 91:1508–1522

    PubMed  Google Scholar 

  • Basso S, Simionato D, Gerotto C, Segalla A, Giacometti GM, Morosinotto T (2014) Characterization of the photosynthetic apparatus of the Eustigmatophycean Nannochloropsis gaditana: evidence of convergent evolution in the supramolecular organization of photosystem I. Biochim Biophys Acta 1837:306–314

    CAS  PubMed  Google Scholar 

  • Behrendt L, Brejnrod A, Schliep M, Sørensen SJ, Larkum AW, Kühl M (2015) Chlorophyll f-driven photosynthesis in a cavernous cyanobacterium. ISME J 9:2108–2111

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bína D, Gardian Z, Herbstová M, Kotabová E, Koník P, Litvín R, Prášil O, Tichý J, Vácha F (2014) Novel type of red-shifted chlorophyll a antenna complex from Chromera velia II. Biochemistry and spectroscopy. Biochim Biophys Acta 1837:802–810

    PubMed  Google Scholar 

  • Bína D, Herbstová M, Gardian Z, Vácha F, Litvín R (2016) Novel structural aspect of the diatom thylakoid membrane: lateral segregation of photosystem I under red-enhanced illumination. Sci Rep 6:25583

    PubMed  PubMed Central  Google Scholar 

  • Bína D, Bouda K, Litvín R (2017a) A two-component nonphotochemical fluorescence quenching in eustigmatophyte algae. Photosynth Res 131:65–77

    PubMed  Google Scholar 

  • Bína D, Gardian Z, Herbstová M, Litvín R (2017b) Modular antenna of photosystem I in secondary plastids of red algal origin: a Nannochloropsis oceanica case study. Photosynth Res 131:255–266

    PubMed  Google Scholar 

  • Bína D, Durchan M, Kuznetsova V, Vácha F, Litvín R (2019) Energy transfer dynamics in a red-shifted violaxanthin-chlorophyll a light-harvesting complex. Biochim Biophys Acta 1860:111–120

    Google Scholar 

  • Blankenship RE, Chen M (2013) Spectral expansion and antenna reduction can enhance photosynthesis for energy production. Curr Opin Chem Biol 17:457–461

    CAS  PubMed  Google Scholar 

  • Bonente G, Ballottari M, Truong TB, Morosinotto T, Ahn TK, Fleming GR, Niyogi KK, Bassi R (2011) Analysis of LhcSR3, a protein essential for feedback de-excitation in the green alga Chlamydomonas reinhardtii. PLoS Biol 9:e1000577

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bowler C, Vardi A, Allen AE (2010) Oceanographic and biogeochemical insights from diatom genomes. Annu Rev Mar Sci 2:333–365

    Google Scholar 

  • Büchel C (2003) Fucoxanthin–chlorophyll proteins in diatoms: 18 and 19 kDa subunits assemble into different oligomeric states. Biochemistry 42:13027–13034

    PubMed  Google Scholar 

  • Büchel C, Garab G (1997) Organization of the pigment molecules in the chlorophyll a/c light-harvesting complex of Pleurochloris meiringensis (xanthophyceae). Characterization with circular dichroism and absorbance spectroscopy. J Photochem Photobiol, B 37:118–124

    Google Scholar 

  • Chen M, Li Y, Birch D, Willows RD (2012) A cyanobacterium that contains chlorophyll f—a red-absorbing photopigment. FEBS Lett 586:3249–3254

    CAS  PubMed  Google Scholar 

  • Croce R, Morosinotto T, Castelletti S, Breton J, Bassi R (2002) The Lhca antenna complexes of higher plants photosystem I. Biochim Biophys Acta 1556:29–48

    CAS  PubMed  Google Scholar 

  • de Bianchi S, Betterle N, Kouřil R, Cazzaniga S, Boekema E, Bassi R, Dall’Osto L (2011) Arabidopsis mutants deleted in the light-harvesting protein Lhcb4 have a disrupted photosystem II macrostructure and are defective in photoprotection. Plant Cell 23:2659–2679

    PubMed  PubMed Central  Google Scholar 

  • Dekker JP, van Roon H, Boekema EJ (1999) Heptameric association of light-harvesting complex II trimers in partially solubilized photosystem II membranes. FEBS Lett 449:211–214

    CAS  PubMed  Google Scholar 

  • Dittami SM, Michel G, Collén J, Boyen C, Tonon T (2010) Chlorophyll-binding proteins revisited—a multigenic family of light-harvesting and stress proteins from a brown algal perspective. BMC Evol Biol 10:365

    CAS  PubMed  PubMed Central  Google Scholar 

  • Drop B, Webber-Birungi M, Yadav SKN, Filipowicz-Szymanska A, Fusetti F, Boekema EJ, Croce R (2014) Light-harvesting complex II (LHCII) and its supramolecular organization in Chlamydomonas reinhardtii. Biochim Biophys Acta 1837:63–72

    CAS  PubMed  Google Scholar 

  • Durchan M, Tichý J, Litvín R, Šlouf V, Gardian Z, Hříbek P, Vácha F, Polívka T (2012) Role of carotenoids in light-harvesting processes in an antenna protein from the chromophyte Xanthonema debile. J Phys Chem B 116:8880–8889

    CAS  PubMed  Google Scholar 

  • Durchan M, Keşan G, Šlouf V, Fuciman M, Staleva H, Tichý J, Litvín R, Bína D, Vácha F, Polívka T (2014) Highly efficient energy transfer from a carbonyl carotenoid to chlorophyll a in the main light harvesting complex of Chromera velia. Biochim Biophys Acta 1837:1748–1755

    CAS  PubMed  Google Scholar 

  • Fawley K, Eliáš M, Fawley M (2014) The diversity and phylogeny of the commercially important algal class Eustigmatophyceae, including the new clade Goniochloridales. J Appl Phycol 26:1773–1782

    CAS  Google Scholar 

  • Fujita Y, Ohki K (2004) On the 710 nm fluorescence emitted by the diatom Phaeodactylum tricornutum at room temperature. Plant Cell Physiol 45:392–397

    CAS  PubMed  Google Scholar 

  • Gan F, Bryant DA (2015) Adaptive and acclimative responses of cyanobacteria to far-red light. Environ Microbiol 17:3450–3465

    CAS  PubMed  Google Scholar 

  • Gardian Z, Tichý J, Vácha F (2011) Structure of PSI, PSII and antennae complexes from yellow-green alga Xanthonema debile. Photosynth Res 108:25–32

    CAS  PubMed  Google Scholar 

  • Gardian Z, Litvín R, Bína D, Vácha F (2014) Supramolecular organization of fucoxanthin–chlorophyll proteins in centric and pennate diatoms. Photosynth Res 121:79–86

    CAS  PubMed  Google Scholar 

  • Guillard R, Lorenzen C (1972) Yellow-green algae with chlorophyllide c. J Phycol 8:10–14

    CAS  Google Scholar 

  • Halldal P (1968) Photosynthetic capacities and photosynthetic action spectra of endozoic algae of the massive coral Favia. The Biological Bulletin 134:411–424

    CAS  Google Scholar 

  • Haniewicz P, Abram M, Nosek L, Kirkpatrick J, El-Mohsnawy E, Olmos JDJ, Kouřil R, Kargul JM (2018) Molecular mechanisms of photoadaptation of photosystem I supercomplex from an evolutionary cyanobacterial/algal intermediate. Plant Physiol 176:1433–1451

    CAS  PubMed  PubMed Central  Google Scholar 

  • Herbstová M, Bína D, Koník P, Gardian Z, Vácha F, Litvín R (2015) Molecular basis of chromatic adaptation in pennate diatom Phaeodactylum tricornutum. Biochim Biophys Acta 1847:534–543

    PubMed  Google Scholar 

  • Herbstová M, Bína D, Kaňa R, Vácha F, Litvín R (2017) Red-light phenotype in a marine diatom involves a specialized oligomeric red-shifted antenna and altered cell morphology. Sci Rep 7:11976

    PubMed  PubMed Central  Google Scholar 

  • Hoffman GE, Sanchez Puerta MV, Delwiche CF (2011) Evolution of light-harvesting complex proteins from Chl c-containing algae. BMC Evol Biol 11:101

    PubMed  PubMed Central  Google Scholar 

  • Ihalainen JA, van Stokkum IHM, Gibasiewicz K, Germano M, van Grondelle R, Dekker JP (2005) Kinetics of excitation trapping in intact Photosystem I of Chlamydomonas reinhardtii and Arabidopsis thaliana. Biochim Biophys Acta 1706:267–275

    CAS  PubMed  Google Scholar 

  • Ikeda Y, Komura M, Watanabe M, Minami C, Koike H, Itoh S, Kashino Y, Satoh K (2008) Photosystem I complexes associated with fucoxanthin–chlorophyll-binding proteins from a marine centric diatom. Biochim Biophys Acta 1777:351–361

    CAS  PubMed  Google Scholar 

  • Janouškovec J, Horák A, Oborník M, Lukeš J, Keeling PJ (2010) A common red algal origin of the apicomplexan, dinoflagellate, and heterokont plastids. Proc Natl Acad Sci USA 107:10949–10954

    PubMed  PubMed Central  Google Scholar 

  • Järvi S, Suorsa M, Paakkarinen V, Aro E-M (2011) Optimized native gel systems for separation of thylakoid protein complexes: novel super- and mega-complexes. Biochem J 439:207–214

    PubMed  Google Scholar 

  • Jeffrey S, Mantoura R, Wright S (2005) Phytoplankton pigments in oceanography: guidelines to modern methods, 2nd edn. UNESCO Publishing, Paris

    Google Scholar 

  • Jiang J, Zhang H, Orf GS, Lu Y, Xu W, Harrington LB, Liu H, Lo CS, Blankenship RE (2014) Evidence of functional trimeric chlorophyll a/c2-peridinin proteins in the dinoflagellate Symbiodinium. Biochim Biophys Acta 1837:1904–1912

    CAS  PubMed  Google Scholar 

  • Keşan G, Litvín R, Bína D, Durchan M, Šlouf V, Polívka T (2016) Efficient light-harvesting using non-carbonyl carotenoids: energy transfer dynamics in the VCP complex from Nannochloropsis oceanica. Biochim Biophys Acta 1857:370–379

    PubMed  Google Scholar 

  • Koehne B, Elli G, Jennings RC, Wilhelm C, Trissl HW (1999) Spectroscopic and molecular characterization of a long wavelength absorbing antenna of Ostreobium sp. Biochim Biophys Acta 1412:94–107

    CAS  PubMed  Google Scholar 

  • Komenda J, Knoppová J, Kopečná J, Sobotka R, Halada P, Yu J, Nickelsen J, Boehm M, Nixon PJ (2012) The Psb27 assembly factor binds to the CP43 complex of photosystem II in the cyanobacterium Synechocystis sp. PCC 6803. Plant Physiol 158:476–486

    CAS  PubMed  Google Scholar 

  • Kotabová E, Jarešová J, Kaňa R, Sobotka R, Bína D, Prášil O (2014) Novel type of red-shifted chlorophyll a antenna complex from Chromera velia. I. Physiological relevance and functional connection to Photosystems. Biochim Biophys Acta 1837:734–743

    PubMed  Google Scholar 

  • Latimer P (1959) Influence of selective light scattering on measurements of absorption spectra of Chlorella. Plant Physiol 34:193

    CAS  PubMed  PubMed Central  Google Scholar 

  • Litvín R, Bína D, Herbstová M, Gardian Z (2016) Architecture of the light-harvesting apparatus of the eustigmatophyte alga Nannochloropsis oceanica. Photosynth Res 130:137–150

    PubMed  Google Scholar 

  • Llansola-Portoles MJ, Litvín R, Ilioaia C, Pascal AA, Bína D, Robert B (2017) Pigment structure in the violaxanthin–chlorophyll-a-binding protein VCP. Photosynth Res 134:51–58

    CAS  PubMed  Google Scholar 

  • Miloslavina Y, Wehner A, Lambrev PH, Wientjes E, Reus M, Garab G, Croce R, Holzwarth AR (2008) Far-red fluorescence: a direct spectroscopic marker for LHCII oligomer formation in non-photochemical quenching. FEBS Lett 582:3625–3631

    CAS  PubMed  Google Scholar 

  • Miyashita H, Ikemoto H, Kurano N, Adachi K, Chihara M, Miyachi S (1996) Chlorophyl d as a major pigment. Nature 383:402

    CAS  Google Scholar 

  • Morosinotto T, Breton J, Bassi R, Croce R (2003) The nature of a chlorophyll ligand in Lhca proteins determines the far red fluorescence emission typical of photosystem I. J Biol Chem 278:49223–49229

    CAS  PubMed  Google Scholar 

  • Nagao R, Tomo T, Noguchi E, Nakajima S, Suzuki T, Okumura A, Kashino Y, Mimuro M, Ikeuchi M, Enami I (2010) Purification and characterization of a stable oxygen-evolving Photosystem II complex from a marine centric diatom, Chaetoceros gracilis. Biochim Biophys Acta 1797:160–166

    CAS  PubMed  Google Scholar 

  • Nagao R, Takahashi S, Suzuki T, Dohmae N, Nakazato K, Tomo T (2013) Comparison of oligomeric states and polypeptide compositions of fucoxanthin chlorophyll a/c-binding protein complexes among various diatom species. Photosynth Res 117:281–288

    CAS  PubMed  Google Scholar 

  • Niedzwiedzki DM, Wolf BM, Blanenship RE (2019) Excitation energy transfer in the far-red absorbing violaxanthin/vaucheriaxanthin chlorophyll a complex from the eustigmatophyte alga FP5. Photosynth Res. https://doi.org/10.1007/s11120-019-00615-y

    Article  PubMed  PubMed Central  Google Scholar 

  • Oborník M, Modrý D, Lukeš M, Cernotíková-Stříbrná E, Cihlář J, Tesařová M, Kotabová E, Vancová M, Prášil O, Lukeš J (2012) Morphology, ultrastructure and life cycle of Vitrella brassicaformis n. sp, n. gen, a novel chromerid from the Great Barrier Reef. Protist 163:306–323

    PubMed  Google Scholar 

  • Ort DR, Merchant SS, Alric J et al (2015) Redesigning photosynthesis to sustainably meet global food and bioenergy demand. Proc Natl Acad Sci USA 112:8529–8536

    CAS  PubMed  PubMed Central  Google Scholar 

  • Passarini F, Wientjes E, van Amerongen H, Croce R (2010) Photosystem I light-harvesting complex Lhca4 adopts multiple conformations: red forms and excited-state quenching are mutually exclusive. Biochim Biophys Acta 1797:501–508

    CAS  PubMed  Google Scholar 

  • Přibyl P, Eliáš M, Cepák V, Lukavský J, Kaštánek P (2012) Zoosporogenesis, morphology, ultrastructure, pigment composition, and phylogenetic position of Trachydiscus minutus (Eustigmatophyceae, Heterokontophyta). J Phycol 48:231–242

    PubMed  Google Scholar 

  • Romero E, Mozzo M, van Stokkum IHM, Dekker JP, van Grondelle R, Croce R (2009) The origin of the low-energy form of photosystem I light-harvesting complex Lhca4: mixing of the lowest exciton with a charge-transfer state. Biophys J 96:L35–L37

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schägger H, von Jagow G (1991) Blue native electrophoresis for isolation of membrane protein complexes in enzymatically active form. Anal Biochem 199:223–231

    PubMed  Google Scholar 

  • Schiller H, Senger H, Miyashita H, Miyachi S, Dau H (1997) Light-harvesting in Acaryochloris marina—spectroscopic characterization of a chlorophyll d-dominated photosynthetic antenna system. FEBS Lett 410:433–436

    CAS  PubMed  Google Scholar 

  • Ševčíková T, Horák A, Klimeš V, Zbránková V, Demir-Hilton E, Sudek S, Jenkins J, Schmutz J, Přibyl P, Fousek J, Vlček Č, Lang BF, Oborník M, Worden AZ, Eliáš M (2015) Updating algal evolutionary relationships through plastid genome sequencing: did alveolate plastids emerge through endosymbiosis of an ochrophyte? Sci Rep 5:10134

    PubMed  PubMed Central  Google Scholar 

  • Standfuss J, Terwisscha van Scheltinga AC, Lamborghini M, Kühlbrandt W (2005) Mechanisms of photoprotection and nonphotochemical quenching in pea light-harvesting complex at 2.5 A resolution. EMBO J 24:919–928

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sukenik A, Livne A, Apt KE, Grossman AR (2000) Characterisation of a gene encoding the light-harvesting violaxanthin–chlorophyll protein of Nannochloropsis sp. (Eustigmatophyceae). J Phycol 36:563–570

    CAS  PubMed  Google Scholar 

  • Sundarabalan B, Shanmugam P (2015) Modelling of underwater light fields in turbid and eutrophic waters: application and validation with experimental data. Ocean Sci 11:33–52

    Google Scholar 

  • Tichý J, Gardian Z, Bína D, Koník P, Litvín R, Herbstová M, Pain A, Vácha F (2013) Light harvesting complexes of Chromera velia, photosynthetic relative of apicomplexan parasites. Biochim Biophys Acta 1827:723–729

    PubMed  Google Scholar 

  • Trissl H-W (1993) Long-wavelength absorbing antenna pigments and heterogeneous absorption bands concentrate excitons and increase absorption cross section. Photosynth Res 35:247–263

    CAS  PubMed  Google Scholar 

  • Umetani I, Kunugi M, Yokono M, Takabayashi A, Tanaka A (2018) Evidence of the supercomplex organization of photosystem II and light-harvesting complexes in Nannochloropsis granulata. Photosynth Res 136:49–61

    CAS  PubMed  Google Scholar 

  • Wahadoszamen Md, Berera R, Ara AM, Romero E, van Grondelle R (2012) Identification of two emitting sites in the dissipative state of the major light harvesting antenna. Phys Chem Chem Phys 14:759–766

    CAS  PubMed  Google Scholar 

  • Wahadoszamen Md, Belgio E, Rahman MA, Ara AM, Ruban AV, van Grondelle R (2016) Identification and characterization of multiple emissive species in aggregated minor antenna complexes. Biochim Biophys Acta 1857:1917–1924

    CAS  PubMed  Google Scholar 

  • Wilhelm C, Jakob T (2006) Uphill energy transfer from long-wavelength absorbing chlorophylls to PS II in Ostreobium sp. is functional in carbon assimilation. Photosynth Res 87:323–329

    CAS  PubMed  Google Scholar 

  • Wolf BM, Niedzwiedzki DM, Magdaong NCM, Roth R, Goodenough U, Blankenship RE (2018) Characterization of a newly isolated freshwater Eustigmatophyte alga capable of utilizing far-red light as its sole light source. Photosynth Res 135:177–189

    CAS  PubMed  Google Scholar 

  • Zhu S-H, Green BR (2010) Photoprotection in the diatom Thalassiosira pseudonana: role of LI818-like proteins in response to high light stress. Biochim Biophys Acta 1797:1449–1457

    CAS  PubMed  Google Scholar 

  • Zouni A, Kern J, Frank J, Hellweg T, Behlke J, Saenger W, Irrgang K-D (2005) Size determination of cyanobacterial and higher plant Photosystem II by gel permeation chromatography, light scattering, and ultracentrifugation. Biochemistry 44:4572–4581

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by the Czech Science Foundation under the Grant Numbers 19-28323X (Radek Litvín, David Bína) and GA15-22000S (Martin Trtílek), by institutional support RVO:60077344, Project LO1416 Algatech plus of the programme NPU I (Marek Pazderník, Eva Kotabová, Ondřej Prášil), and European Regional Development Fund (No. CZ.02.1.01/0.0/0.0/15_003/0000441, Zdenko Gardian). Skilled technical assistance of Ivana Hunalová and František Matoušek is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Bína.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 583 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Litvín, R., Bína, D., Herbstová, M. et al. Red-shifted light-harvesting system of freshwater eukaryotic alga Trachydiscus minutus (Eustigmatophyta, Stramenopila). Photosynth Res 142, 137–151 (2019). https://doi.org/10.1007/s11120-019-00662-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-019-00662-5

Keywords

Navigation