Skip to main content
Log in

Comparison of preconditioned Krylov subspace iteration methods for PDE-constrained optimization problems

Stokes control

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

The governing dynamics of fluid flow is stated as a system of partial differential equations referred to as the Navier-Stokes system. In industrial and scientific applications, fluid flow control becomes an optimization problem where the governing partial differential equations of the fluid flow are stated as constraints. When discretized, the optimal control of the Navier-Stokes equations leads to large sparse saddle point systems in two levels. In this paper, we consider distributed optimal control for the Stokes system and test the particular case when the arising linear system can be compressed after eliminating the control function. In that case, a system arises in a form which enables the application of an efficient block matrix preconditioner that previously has been applied to solve complex-valued systems in real arithmetic. Under certain conditions, the condition number of the so preconditioned matrix is bounded by 2. The numerical and computational efficiency of the method in terms of number of iterations and execution time is favorably compared with other published methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Axelsson, O., Neytcheva, M., Ahmad, B.: A comparison of iterative methods to solve complex valued linear algebraic systems. Numer. Algorithms 66, 811–841 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  2. Babuska, I., Aziz, A. K.: Survey lectures on the mathematical foundations of the finite element method, pp 1–359. Academic Press, New York (1972)

    MATH  Google Scholar 

  3. Cahouet, J., Chabard, J. P.: Some fast 3d finite element solvers for the generalized Stokes problem. Int. J. Numer. Meth. Fl. 8, 869–895 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  4. Elman, H. C., Golub, G. H.: Inexact and preconditioned Uzawa algorithms for saddle point problems. SIAM J. Numer. Anal. 31, 1645–1661 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  5. Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Element Methods, Springer-Verlag (1991)

  6. Hiptmair, R.: Operator preconditioning. Comput. Math. Appl. 52, 699–706 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bangerth, W., Hartmann, R., Kanschat, G.: deal.ii-a general-purpose object-oriented finite element library. ACM Trans. Math. Softw. 33 (2007). doi:10.1145/1268776.1268779

  8. Ahrens, J., Geveci, B., Law, C.: Paraview. Elsevier (2005)

  9. Lions, J. -L.: Optimal control of systems governed by partial differential equations. Springer-Verlag, Berlin (1971)

    Book  MATH  Google Scholar 

  10. Axelsson, O., Farouq, S., Neytcheva, M.: Comparison of preconditioned Krylov subspace iteration methods for PDE-constrained optimization problems. Poisson and convection-diffusion control. Numerical Algorithms. In press. doi:10.1007/s11075-016-0111-1

  11. Pearson, J.W: On the development of parameter-robust preconditioners and commutator arguments for solving Stokes control problems. ETNA 44, 53–72 (2015)

    MathSciNet  MATH  Google Scholar 

  12. Wathen, A. J., Rees, T.: Chebyshev semi-iteration in preconditioning for problems including the mass matrix. ETNA 34(09), 125–135 (2008)

    MathSciNet  MATH  Google Scholar 

  13. Olshanskii, M. A., Peters, J., Reusken, A.: Uniform preconditioners for a parameter dependent saddle point problem with application to generalized Stokes interface equations. Numer. Math. 105, 159–191 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  14. Saad, Y.: A flexible inner-outer preconditioned GMRES algorithm. SIAM J. Sci. Comput. 14, 461–469 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  15. Paige, C., Saunders, M.: Solution of sparse indefinite systems of linear equations. SIAM J. Numer. Anal. 12, 617–629 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  16. Borzí, A., Schulz, V.: Computational Optimization of Systems Governed by Partial Differential Equations, volume 8 of Computational Science and Engineering. Philadelphia (2012)

  17. Drǎgǎnescu, A., Soane, A. M.: Multigrid solution of a distributed optimal control problem constrained by the Stokes equations. Appl. Math. Comput. 219, 5622–5634 (2013)

    MathSciNet  MATH  Google Scholar 

  18. Hinze, M., Pinnau, R., Ulbrich, M, Ulbrich, S.: Optimization with PDE Constraints. Springer-Verlag (2009)

  19. Bramble, J. H., Pasciak, J. E., Vassilev, A. T.: Analysis of the inexact Uzawa algorithm for saddle point problems. SIAM J. Numer. Anal. 34, 1072–1092 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  20. Elman, H. C., Silvester, D. J., Wathen, A. J.: Finite elements and fast iterative solvers: with applications in incompressible fluid dynamics. Oxford University Press, New York (2005)

    MATH  Google Scholar 

  21. Pearson, J. W., Wathen, A. J.: A new approximation of the Schur complement in preconditioners for PDE-constrained optimization. Numer. Linear Alg. Appl. 19, 816–829 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  22. Rees, T., Wathen, A. J.: Preconditioning iterative methods for the optimal control of the Stokes equations. SIAM J. Sci. Comput. 33, 2903–2926 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  23. Heroux, M. A., Willenbring, J. M.: Trilinos users guide. Technical Report SAND2003-2952, Sandia National Laboratories (2003)

  24. Mardal, K. -A., Winther, R.: Uniform preconditioners for the time dependent Stokes problem. Numer. Math. 98, 305–327 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  25. Mardal, K. -A., Winther, R.: Erratum. Uniform preconditioners for the time dependent Stokes problem. Numer. Math. 103, 171–172 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  26. Axelsson, O., Boyanova, P., Kronbichler, M., Neytcheva, M., Wu, X.: Numerical computational efficiency of solvers for two-phase problems. Comput. Math Appl. 65, 301–314 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  27. Zulehner, W.: Nonstandard norms and robust estimates for saddle-point problems. SIAM J Matrix Anal. Appl. 32, 536–560 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  28. Zulehner, W.: Efficient solvers for saddle point problems with applications to PDE-constrained optimization, pp 197–216. Springer (2013)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maya Neytcheva.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Axelsson, O., Farouq, S. & Neytcheva, M. Comparison of preconditioned Krylov subspace iteration methods for PDE-constrained optimization problems. Numer Algor 74, 19–37 (2017). https://doi.org/10.1007/s11075-016-0136-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-016-0136-5

Keywords

Navigation