Skip to main content
Log in

Kinetics and influence of thermally induced crystallization of Fe,Ni-containing phases on thermomagnetic properties of Fe40Ni40B12Si8 amorphous alloy

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Thermal treatment of Fe40Ni40B12Si8 amorphous alloy leads to crystallization of various Fe and Ni-containing phases and their recrystallization, affecting the functional properties of the alloy. Kinetics of multistep crystallization of Fe40Ni40B12Si8 amorphous alloy and influence of thermally induced microstructural transformations on magnetic moment of the alloy were studied by means of structural examination, thermal analysis and thermomagnetic measurements. Temperature regions of growth and loss of magnetic moment of the alloy were correlated with the microstructural changes. Curie temperatures of the alloy in fully amorphous and fully crystallized form were observed at 620 and 910 K, respectively. Detailed kinetic study including deconvolution of the complex exothermic DTA peaks yielded Arrhenius parameters and kinetic model of individual crystallization steps, which reflect the nature of the studied processes and the alloy chemical composition. The obtained parameters and kinetic models can be used for kinetic predictions of thermal stability and functionality of the alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Suryanarayana C, Inoue A. Metallic glasses. In: Giuseppe Bellussi, Matthias Bohnet, James Bus, Karlheinz Drauz, Helmut Greim, Klaus-Peter Jäckel, Uwe Karst, Axel Kleemann, Gerhard Kreysa, Trevor Laird, Willi Meier, Eckhard Ottow, Michael Röper, Japie Scholtz, Kai Sundmacher, Roland Ulber, Ulrich Wietelmann, editors. Ullmann’s encyclopedia of industrial chemistry. 7th edn. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA; 2012.

  2. Suryanarayana C, Inoue A. Iron-based bulk metallic glasses. Int Mater Rev. 2013;58:131–66.

    CAS  Google Scholar 

  3. Minić DG, Blagojević VA, Mihajlović LE, Ćosović VR, Minić DM. Kinetics and mechanism of structural transformations of Fe75Ni2Si8B13C2 amorphous alloy induced by thermal treatment. Thermochim Acta. 2011;519:83–9.

    Google Scholar 

  4. Mitra A, Rao V, Pramanik S, Mohanty ON. Crystallization study of amorphous Fe40Ni40B20 by electrical resistivity measurements. J Mater Sci. 1992;27:5863–8.

    CAS  Google Scholar 

  5. Zhukov A, Churyukanova M, Kaloshkin S, Semenkova V, Gudoshnikov S, Ipatov M, Talaat A, Blanco JM, Zhukova V. Effect of annealing on magnetic properties and magnetostriction coefficient of Fe-Ni-based amorphous microwires. J Alloy Compd. 2015;651:718–23.

    CAS  Google Scholar 

  6. Sun BR, Xin SW, Shen TD. Low-temperature magnetization and magnetic exchange interactions in Fe40Ni40P14B6 bulk metallic glasses. J Magn Magn Mater. 2017;429:276–80.

    CAS  Google Scholar 

  7. Zhang L, Ma XH, Li Q, Zhang J, Dong Y, Chang C. Preparation and properties of Fe80-xNixP14B6 bulk metallic glasses. J Alloy Compd. 2014;608:79–84.

    CAS  Google Scholar 

  8. Aronhime N, DeGeorge V, Keylin V, Ohodnicki P, McHenry ME. The effects of strain-annealing on tuning permeability and lowering losses in Fe-Ni-based metal amorphous nanocomposites. JOM. 2017;69:2164–70.

    CAS  Google Scholar 

  9. Hasegawa R. Applications of amorphous magnetic alloys in electronic devices. J Non-Cryst Solids. 2001;287:405–12.

    CAS  Google Scholar 

  10. Gleiter H. Nanocrystalline materials. Prog Mater Sci. 1989;33:223–315.

    CAS  Google Scholar 

  11. Du SW, Ramanujan RV. Crystallization and magnetic properties of Fe40Ni38B18Mo4 amorphous alloy. J Non-Cryst Solids. 2005;351:3105–13.

    CAS  Google Scholar 

  12. Zaluska A, Matyja H. Differences in crystallization of Fe-Ni-based metallic glasses caused by changes in heating conditions. Mat Sci Eng. 1988;97:347–50.

    CAS  Google Scholar 

  13. Vyazovkin S. Modern isoconversional kinetics: from misconceptions to advances, handbook of thermal analysis and calorimetry, vol. 6. Amsterdam: Elsevier; 2018. p. 131–72.

    Google Scholar 

  14. Svoboda R, Málek J. Crystallization mechanisms occurring in the Se–Te glassy system. J Therm Anal Calorim. 2015;119:155–66.

    CAS  Google Scholar 

  15. Szepcsik B, Pukánszky B. Separation and kinetic analysis of the thermo-oxidative reactions of polyacrylonitrile upon heat treatment. J Therm Anal Calorim. 2018;133:1371–8.

    CAS  Google Scholar 

  16. Hazzat ME, Sifou A, Arsalane S, Hamidi AE. Novel approach to thermal degradation kinetics of gypsum: application of peak deconvolution and Model-Free isoconversional method. J Therm Anal Calorim. 2020;140:657–71.

    Google Scholar 

  17. Olejnik A, Gosz K, Piszczyk Ł. Kinetics of cross-linking processes of fast-curing polyurethane system. Thermochim Acta. 2020;683:178435.

    CAS  Google Scholar 

  18. Shilyaeva Y, Volovlikova O, Smirnov D, Volkova A, Sysa A, Mikhailova M, Gavrilov S. Thermal and kinetic analyses of silicide formation at nanostructured Si/Ni interface. J Therm Anal Calorim. 2019;138:2339–45.

    CAS  Google Scholar 

  19. Minić DM, Blagojević VA, Minić DM, David B, Pizúrová N, Žák T. Nanocrystal growth in thermally treated Fe75Ni2Si8B13C2 amorphous alloy. Metall Mater Trans A. 2012;43A:3062–9.

    Google Scholar 

  20. Tomić P, Davidović M. The study of relaxational properties and crystallization of the metallic glass Fe80Sil0B10. J Non-Cryst Solids. 1996;204:32–7.

    Google Scholar 

  21. Kaloshkin SD, Tomilin IA. The crystallization kinetics of amorphous alloys. Thermochim Acta. 1996;280–1:303–17.

    Google Scholar 

  22. Wei G, Cantor B. The effect of heat treatment and surface treatment on the crystallisation behaviour of amorphous Fe40Ni40B20. Acta Metall. 1989;37:3409–24.

    CAS  Google Scholar 

  23. Pradell T, Sunol JJ, Clavaguera N, Clavaguera-Mora MT. Crystallization behaviour of Fe40Ni40SixP20x (x = 6, 10, 14) amorphous alloys. J Non-Cryst Solids. 2000;276:113–21.

    CAS  Google Scholar 

  24. Vasić MM, Roupcová P, Pizúrová N, Stevanović S, Blagojević VA, Žák T, Minić DM. Thermally induced structural transformations of Fe40Ni40P14B6 amorphous alloy. Metall Mater Trans A. 2016;47A:260–7.

    Google Scholar 

  25. Ma H, Wang W, Zhang J, Li G, Cao C, Zhang H. Crystallization and corrosion resistance of (Fe0.78Si0.09B0.13)100−xNix (x=0, 2 and 5) glassy alloys. J Mater Sci Technol. 2011;27:1169–77.

    CAS  Google Scholar 

  26. Long ZL, Chang CT, Ding YH, Shao Y, Zhang P, Shen BL, Inoue A. Corrosion behavior of Fe-based ferromagnetic (Fe, Ni)–B–Si–Nb bulk glassy alloys in aqueous electrolytes. J Non-Cryst Solids. 2008;354:4609–13.

    CAS  Google Scholar 

  27. Li Q. Formation of ferromagnetic bulk amorphous Fe40Ni40P14B6 alloys. Mater Lett. 2006;60:3113–7.

    CAS  Google Scholar 

  28. Gobran NK, Danial MM, Kamel R. Kinetics of the amorphous-crystalline transition in the metallic glass Fe40Ni40B20. Phys Stat Sol. 1984;82:63–6.

    CAS  Google Scholar 

  29. Raja VS, Ranganathan KS. Microstructural and kinetic aspects of devitrification of Fe40Ni40B20 metallic glass. J Mater Sci. 1990;25:4667–77.

    CAS  Google Scholar 

  30. Gu B, Liu F, Chen YZ, Yiang YH, Ma YZ. Structural modification and transformation kinetics: crystallization of amorphous Fe40Ni40P14B6 eutectic alloy. J Mater Sci. 2014;49:842–57.

    CAS  Google Scholar 

  31. Vasić MM, Blagojević VA, Begović NN, Žák T, Pavlović VB, Minć DM. Thermally induced crystallization of amorphous Fe40Ni40P14B6 alloy. Thermochim Acta. 2015;614:129–36.

    Google Scholar 

  32. Vasić MM, Žák T, Pizúrová N, Simatović IS, Minić DM. Influence of thermal treatment on microstructure and corrosion behavior of amorphous Fe40Ni40B12Si8 alloy. Metall Mater Trans. 2021. https://doi.org/10.1007/s11661-020-06079-3.

    Article  Google Scholar 

  33. http://www.crystallography.net. Accessed 1 Sept 2014 and 6 Mar 2017

  34. ICSD Inorganic Crystals Structure Database, Release 2014/2, FIZ Karlsruhe, Eggenstein-Leopoldshafen, Germany.

  35. Lutterotti L. Total pattern fitting for the combined size-strain-stress-texture determination in thin film diffraction. Nucl Instrum Meth B. 2010;268:334–40.

    CAS  Google Scholar 

  36. Žák T, Jirásková Y. CONFIT: Mössbauer spectra fitting program. Surf Interface Anal. 2006;38:710–4.

    Google Scholar 

  37. Vyazovkin S, Burnham AK, Criado JM, Pérez-Maqueda LA, Popescu C, Sbirrazzuoli N. ICTAC kinetics committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta. 2011;520:1–19.

    CAS  Google Scholar 

  38. Málek J. Kinetic analysis of crystallization processes in amorphous materials. Thermochim Acta. 2000;355:239–53.

    Google Scholar 

  39. Šesták J, Berggren G. Study of the kinetics of the mechanism of solid-state reactions at increasing temperatures. Thermochim Acta. 1971;3:1–12.

    Google Scholar 

  40. Becker JJ, Luborsky FE, Walter JL. Magnetic moments and Curie temperatures of (Fe, Ni)80(P, B)20 amorphous alloys. IEEE T Magn. 1977;13:988–91.

    Google Scholar 

  41. Minić DM, Blagojević VA, Maričić AM, Žák T, Minić DM. Influence of structural transformations on functional properties of Fe75Ni2Si8B13C2 amorphous alloy. Mater Chem Phys. 2012;134:111–5.

    Google Scholar 

  42. Minić DM, Minić DM, Žák T, Roupcová P, David B. Structural transformations of Fe81B13Si4C2 amorphous alloy induced by heating. J Magn Magn Mater. 2011;323:400–4.

    Google Scholar 

  43. Dahal A, Gunasekera J, Harringer L, Singh DK, Singh DJ. Metallic nickel silicides: Experiments and theory for NiSi and first principles calculations for other phases. J Alloy Compd. 2016;672:110–6.

    CAS  Google Scholar 

  44. Chiriac H, Lupu N. New bulk amorphous magnetic materials. Phys B. 2001;299:293–301.

    CAS  Google Scholar 

  45. Neamtu BV, Chicinas HF, Marinca TF, Isnard O, Chicinas I. Preparation and characterisation of Co–Fe–Ni–M-Si–B (M = Zr, Ti) amorphous powders by wet mechanical alloying. J Alloy Compd. 2016;673:80–5.

    CAS  Google Scholar 

  46. Chiriac H, Pletea M, Hristoforou E. Fe-based amorphous thin film as a magnetoelastic sensor material. Sensor Actuat. 2000;81:166–9.

    CAS  Google Scholar 

  47. Ramasamy S, Lundgren L, Ganesan K, Narayanasamy A. Thermomagnetic and crystallisation behaviour of amorphous Fe95−xW5Bx alloys. J Phys F Met Phys. 1987;17:753–65.

    CAS  Google Scholar 

  48. Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29:1702–6.

    CAS  Google Scholar 

  49. Ortega A. A simple and precise linear integral method for isoconversional data. Thermochim Acta. 2008;474:81–6.

    CAS  Google Scholar 

  50. Ozawa T. A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn. 1965;38:1881–6.

    CAS  Google Scholar 

  51. Flynn JH, Wall LA. A quick, direct method for the determination of activation energy from thermogravimetric data. Polym Lett. 1966;4:323–8.

    CAS  Google Scholar 

  52. Akahira T, Sunose T. Trans. Joint Convention of Four Electrical Institutes, paper no. 246, 1969 research report, Chiba Institute of Technology. J Sci Educ Technol. 1971;16:22–31.

    Google Scholar 

  53. Vogel H, Heimendahl MV. The effect of pre-annealing on the subsequent crystallization in the metallic glasses Fe–Ni–P–B and Fe–Ni–Cr–P–B using transmission electron microscopy. Mat Sci Eng. 1983;57:171–9.

    CAS  Google Scholar 

  54. Scott MG. The crystallization kinetics of Fe–Ni based metallic glasses. J Mater Sci. 1978;13:291–6.

    CAS  Google Scholar 

  55. Wu Y, Hui XD, Lu ZP, Liu ZY, Liang L, Chen GL. Effects of metalloid elements on the glass-forming ability of Fe-based alloys. J Alloy Compd. 2009;467:187–90.

    CAS  Google Scholar 

  56. Criado JM, Malek J, Ortega A. Applicability of the master plots in kinetic analysis of non-isothermal data. Thermochim Acta. 1989;147:377–85.

    CAS  Google Scholar 

  57. Perez-Maqueda LA, Criado JM, Gotor FJ, Malék J. Advantages of combined kinetic analysis of experimental data obtained under any heating profile. J Phys Chem A. 2002;106:2862–8.

    CAS  Google Scholar 

  58. Vyazovkin S. Model-free kinetics—staying free of multiplying entities without necessity. J Therm Anal Calorim. 2006;83:45–51.

    CAS  Google Scholar 

Download references

Acknowledgements

This research was financially supported by the Ministry of Education, Science and Technological Development of the Republic of Serbia (contract No. 451-03-68/2020-14/200146) and by the Ministry of Education, Youth and Sports of the Czech Republic under the projects CEITEC 2020 (LQ1601), and m-IPMinfra (CZ.02.1.01/0.0/0.0/16_013/0001823). The authors want to sincerely thank Prof. Nikola Cvjetićanin (Faculty of Physical Chemistry, University of Belgrade, Serbia) for performing DTA measurements and Ing. Pavla Roupcová, PhD (Institute of Physics of Materials AS CR, Brno, Czech Republic) for performing XRD measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Milica M. Vasić.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 555 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vasić, M.M., Žák, T. & Minić, D.M. Kinetics and influence of thermally induced crystallization of Fe,Ni-containing phases on thermomagnetic properties of Fe40Ni40B12Si8 amorphous alloy. J Therm Anal Calorim 147, 3543–3551 (2022). https://doi.org/10.1007/s10973-021-10819-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-021-10819-x

Keywords

Navigation