Skip to main content
Log in

A new approach for predicting the pool boiling heat transfer coefficient of refrigerant R141b and its mixtures with surfactant and nanoparticles using experimental data

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In the present study, the pool boiling process for the refrigerant R141b and its mixtures with Span 80 surfactant and TiO2 nanoparticles has been examined. The results for the heat transfer coefficient (HTC) were taken at various boiling pressures (0.2, 0.3, 0.4 MPa) in the range of the heat fluxes 5.8–56.4 kW m−2 and for the internal boiling characteristics (IBC) such as the bubble departure diameter, frequency and velocity of bubble growth at atmospheric pressure in the range of the heat fluxes 29.6–57.0 kW m−2. We found that the additives of Span 80 and Span 80/TiO2 nanoparticles enhance the HTC at the lower heat flux densities and pressures. However, at higher values of the heat flux and pressure the HTC was deteriorated by the additives. At the same time, no significant impact was obtained for the IBCs. An analysis of the Rensselaer Polytechnic Institute model performance for the case when experimental data on the nucleation sites density is unavailable has revealed no qualitative agreement between experimental and predicted data on the HTC. Thus, we proposed a new approach that combines limited set of the experimental data (LSED) with correlations of the IBC’s versus heat flux and pressure. Finally, the LSED allowed to achieve both qualitative and quantitative agreement (within ± 10%) between predicted and experimental data on the HTC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Abbreviations

A, B, C :

Empirical coefficients

A :

Surface area of the heater (m2)

\(\bar{d}_{\text{b}}\) :

Mean bubble departure diameter (mm)

\(d_{\text{h}}\) :

Diameter of heating surface (m)

\(\bar{f}_{\text{b}}\) :

Mean bubble departure frequency (s−1)

h :

Heat transfer coefficient (kW m−2 K−1)

k :

Thermal conductivity (W m−1 K−1)

\(n_{\text{b}}\) :

Nucleation site density (m−2)

P :

Pressure (MPa)

q :

Heat flux density (kW m−2)

Q :

Heat flux (kW)

r mean :

Mean equivalent radius of nanoparticles in nanofluid (nm)

R rc :

Resistance of resistance coil (Ω)

T :

Temperature (K)

U h :

Voltage drop across the heater (V)

U rc :

Voltage drop across the resistance coil (V)

\(\bar{w}_{\text{b}}\) :

Mean velocity of bubble growth (mm s−1)

\(\Delta h\) :

Heat of vaporization (J kg−1)

\(\Delta T\) :

Wall superheat, \(T_{\text{S}} - T_{\text{w}}\) (K)

π :

Reduced pressure, P/PC

ρ :

Density (kg m−3)

σ :

Surface tension (N m−1)

τ :

Time (h)

1.1:

Thermophysical properties at P0.1 = 0.1013 MPa

C:

Property under critical conditions

S:

Property under saturated conditions

w:

Property at wall (heating surface) temperature

calc:

Calculated value

exp:

Experimental value

′:

Liquid phase

″:

Vapor phase

CTAB:

Cetyltrimethylammonium bromide

EDX:

Energy-dispersive X-ray analysis

HTC:

Heat transfer coefficient

IBC:

Internal boiling characteristics

LSED:

Limited set of experimental data

RMSE:

Root mean square error

SEM:

Scanning electron microscopy

SDBS:

Dodecylbenzenesulfonic acid sodium salt

SDS:

Dodecyl sulfate sodium salt

ST:

Spectral turbidity

TEM:

Transmission electron microscopy

References

  1. Thome JR. Engineering data book III. Huntsville: Wolverine Tube Inc; 2004.

    Google Scholar 

  2. Mostinski IL. Application of the rule of corresponding states for calculation of heat transfer and critical heat flux. Teploenergetika. 1963;4:66–71.

    Google Scholar 

  3. Cooper MG. Heat flow rates in saturated nucleate pool boiling-a wide-ranging examination using reduced properties. Adv Heat Transf. 1984;16:157–239. https://doi.org/10.1016/S0065-2717(08)70205-3.

    Article  CAS  Google Scholar 

  4. Stephan P, Kabelac S, Kind M, Martin H, Mewes D, Schaber K. VDI heat atlas. Springer; 2010. https://doi.org/10.1007/978-3-540-77877-6.

  5. Ribatski G, Jabardo JMS. Nucleate boiling of halocarbon refrigerants: heat transfer correlations. HVAC&R Res. 2000;6:349–67. https://doi.org/10.1080/10789669.2000.10391421.

    Article  Google Scholar 

  6. Rohsenow WM. A method of correlating heat transfer data for surface boiling of liquids. Cambridge: MIT Division of Industrial Cooporation; 1951.

    Google Scholar 

  7. Kutateladze SS. Heat transfer and hydrodynamic resistance: handbook. chap. 12.7. Moscow: Energoatomizdat; 1990 (in Russian).

  8. Jung D, Kim Y, Ko Y, Song K. Nucleate boiling heat transfer coefficients of pure halogenated refrigerants. Int J Refrig. 2003;26:240–8. https://doi.org/10.1016/S0140-7007(02)00040-3.

    Article  CAS  Google Scholar 

  9. Stephan K, Abdelsalam M. Heat-transfer correlations for natural convection boiling. Int J Heat Mass Transf. 1980;23:73–87. https://doi.org/10.1016/0017-9310(80)90140-4.

    Article  CAS  Google Scholar 

  10. Tolubinsky VI. Heat transfer at boiling. Kyiv: Kyiv Nauk Dumka; 1980 (in Russian).

    Google Scholar 

  11. Kurul N, Podowski MZ. Multidimensional effects in forced convection subcooled boiling. In: International Heat Transfer Conference Digital Library, Begel House Inc.; 1990.

  12. Gerardi C, Buongiorno J, Hu L, McKrell T. Study of bubble growth in water pool boiling through synchronized, infrared thermometry and high-speed video. Int J Heat Mass Transf. 2010;53:4185–92. https://doi.org/10.1016/j.ijheatmasstransfer.2010.05.041.

    Article  CAS  Google Scholar 

  13. Nikulin A, Khliyeva O, Lukianov N, Zhelezny V, Semenyuk Y. Study of pool boiling process for the refrigerant R11, isopropanol and isopropanol/Al2O3 nanofluid. Int J Heat Mass Transf. 2018;118:746–57. https://doi.org/10.1016/j.ijheatmasstransfer.2017.11.008.

    Article  CAS  Google Scholar 

  14. Trisaksri V, Wongwises S. Nucleate pool boiling heat transfer of TiO2–R141b nanofluids. Int J Heat Mass Transf. 2009;52:1582–8. https://doi.org/10.1016/j.ijheatmasstransfer.2008.07.041.

    Article  CAS  Google Scholar 

  15. Kourti T. Turbidimetry in particle size. Analysis. 2000. https://doi.org/10.1002/9780470027318.a1517.

    Article  Google Scholar 

  16. Crawley G, Cournil M, Di Benedetto D. Size analysis of fine particle suspensions by spectral turbidimetry: potential and limits. Powder Technol. 1997;91:197–208. https://doi.org/10.1016/S0032-5910(96)03252-4.

    Article  CAS  Google Scholar 

  17. Zhelezny VP, Lukianov NN, Khliyeva OY, Nikulina AS, Melnyk AV. A complex investigation of the nanofluids R600a-mineral oil-Al2O3 and R600a-mineral oil-TiO2. Thermophysical properties. Int J Refrig. 2017;74:488–504. https://doi.org/10.1016/j.ijrefrig.2016.11.008.

    Article  CAS  Google Scholar 

  18. Nikulin A, Moita AS, Moreira ALN, Murshed SMS, Huminic A, Grosu Y, et al. Effect of Al2O3 nanoparticles on laminar, transient and turbulent flow of isopropyl alcohol. Int J Heat Mass Transf. 2019;130:1032–44. https://doi.org/10.1016/J.IJHEATMASSTRANSFER.2018.10.114.

    Article  CAS  Google Scholar 

  19. Nikulin A, Khliyeva O, Zhelezny V, Semenyuk Y, Lukianov N, Moreira ALN. How does change of the bulk concentration affect the pool boiling of the refrigerant oil solutions and their mixtures with surfactant and nanoparticles? Int J Heat Mass Transf. 2019;137:868–75. https://doi.org/10.1016/J.IJHEATMASSTRANSFER.2019.03.109.

    Article  CAS  Google Scholar 

  20. Taylor BN, Kuyatt C. Guidelines for evaluating and expressing the uncertainty of NIST measurement results 1994 Edition. 1994.

  21. Peng H, Ding G, Hu H. Effect of surfactant additives on nucleate pool boiling heat transfer of refrigerant-based nanofluid. Exp Therm Fluid Sci. 2011;35:960–70. https://doi.org/10.1016/J.EXPTHERMFLUSCI.2011.01.016.

    Article  CAS  Google Scholar 

  22. Cheng L, Mewes D, Luke A. Boiling phenomena with surfactants and polymeric additives: a state-of-the-art review. Int J Heat Mass Transf. 2007;50:2744–71. https://doi.org/10.1016/j.ijheatmasstransfer.2006.11.016.

    Article  CAS  Google Scholar 

  23. Pioro IL, Rohsenow W, Doerffer SS. Nucleate pool-boiling heat transfer. I: Review of parametric effects of boiling surface. Int J Heat Mass Transf. 2004;47:5033–44. https://doi.org/10.1016/j.ijheatmasstransfer.2004.06.019.

    Article  CAS  Google Scholar 

  24. Sharma PR, Lee A, Harrison T, Martin E, Neighbors K. Effect of pressure and heat flux on bubble departure diameters and bubble emission frequency. Grambling: Grambling State University; 1996.

    Google Scholar 

  25. Chen H, Chen G, Zou X, Yao Y, Gong M. Experimental investigations on bubble departure diameter and frequency of methane saturated nucleate pool boiling at four different pressures. Int J Heat Mass Transf. 2017;112:662–75. https://doi.org/10.1016/J.IJHEATMASSTRANSFER.2017.05.031.

    Article  CAS  Google Scholar 

  26. McHale JP, Garimella SV. Bubble nucleation characteristics in pool boiling of a wetting liquid on smooth and rough surfaces. Int J Multiph Flow. 2010;36:249–60. https://doi.org/10.1016/J.IJMULTIPHASEFLOW.2009.12.004.

    Article  CAS  Google Scholar 

  27. Khliyeva O, Lukianova T, Semenyuk Y, Zhelezny V. Experimental study of the effect of TiO2 nanoparticles on the thermophysical properties of the R141b refrigerant. Eastern-Eur J Enterp Technol. 2018;6:33–42. https://doi.org/10.15587/1729-4061.2018.147960.

    Article  CAS  Google Scholar 

  28. Lemmon EW, Huber ML, McLinden MO. NIST reference fluid thermodynamic and transport properties–REFPROP. NIST Stand Ref Database. 2002;23:v7.

    Google Scholar 

  29. Gerardi C, Buongiorno J, Hu L, McKrell T. Infrared thermometry study of nanofluid pool boiling phenomena. Nanoscale Res Lett. 2011;6:232. https://doi.org/10.1186/1556-276X-6-232.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Isachenko V, Osipova V, Sukomel A. Teploperedacha (Heat transfer). Moscow: Energomash; 1981 (in Russian).

    Google Scholar 

  31. Zhokhov KA. Number of vapour generating centers. In: Aerodynamics heat transfer work element power equipment. Leningrad, Russ 1969:131–5.

  32. Liang G, Mudawar I. Review of pool boiling enhancement with additives and nanofluids. Int J Heat Mass Transf. 2018;124:423–53. https://doi.org/10.1016/J.IJHEATMASSTRANSFER.2018.03.046.

    Article  CAS  Google Scholar 

  33. Liang G, Mudawar I. Review of pool boiling enhancement by surface modification. Int J Heat Mass Transf. 2019;128:892–933. https://doi.org/10.1016/J.IJHEATMASSTRANSFER.2018.09.026.

    Article  Google Scholar 

  34. Ciloglu D, Bolukbasi A. A comprehensive review on pool boiling of nanofluids. Appl Therm Eng. 2015;84:45–63. https://doi.org/10.1016/J.APPLTHERMALENG.2015.03.063.

    Article  CAS  Google Scholar 

  35. Kiyomura IS, Manetti LL, da Cunha AP, Ribatski G, Cardoso EM. An analysis of the effects of nanoparticles deposition on characteristics of the heating surface and ON pool boiling of water. Int J Heat Mass Transf. 2017;106:666–74. https://doi.org/10.1016/J.IJHEATMASSTRANSFER.2016.09.051.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Ministry of Education and Science of Ukraine (Project Number 0118U000237), the Foundation for Science and Technology (FCT), Portugal (Project Number UID/EEA/50009/2019) and EU COST Action CA15119 (NANOUPTAKE). Authors appreciation goes to María Echeverría for her help with TEM measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Nikulin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khliyeva, O., Zhelezny, V., Lukianova, T. et al. A new approach for predicting the pool boiling heat transfer coefficient of refrigerant R141b and its mixtures with surfactant and nanoparticles using experimental data. J Therm Anal Calorim 142, 2327–2339 (2020). https://doi.org/10.1007/s10973-020-09479-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-09479-0

Keywords

Navigation