Skip to main content
Log in

Dynamic elastic properties of hardened experimental mortar bars affected by accelerated alkali–silica reactivity test: a laboratory approach

  • Aggregates
  • Published:
Bulletin of Engineering Geology and the Environment Aims and scope Submit manuscript

Abstract

The evaluation of ASR sensitivity of aggregates is of utmost importance due to durability and safety of structures and also due to economic reasons related to repairs or replacements of ASR-affected concrete. Laboratory tests for ASR detection rely mostly on petrographic examination and on laboratory expansion tests. The latter are mostly expressed in terms of length change (expansion) of experimental mortar bars subjected to the effect of alkaline environment. Along with this, recording of the propagating ultrasonic wave signal can increase reliability of test results. In the recent study, dynamic elastic properties of experimental mortar bars were recorded in both normal setting/hardening state (first 28 days) and in the conditions of accelerated ageing conditions in alkaline solution with elevated temperature (another 37 days). Setting/hardening of the studied materials under normal conditions was manifested by quasi-exponential P- and S-wave ultrasonic velocity increase. However, alkaline solution resulted in the rapid development of ASR phenomena in reactive aggregates and significant change of elastic wave velocities and other dynamic elastic parameters. Comparing various ultrasonic characteristics, dynamic ones (amplitudes, frequencies) proved significantly higher sensitivity and tighter correlation to length changes (expansion) cause by ASR than did the kinematic ones (elastic wave velocities, dynamic elastic moduli).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abdelrahman M, El Batanouny MK, Ziehl P, Fasl J, Larosche CJ, Fraczek J (2015) Classification of alkali–silica reaction damage using acoustic emission: a proof-of-concept study. Constr Build Mater 95:406–413

    Article  Google Scholar 

  • Aggelis DG, Shiotani T (2007) Surface wave propagation in strongly heterogeneous media. J Acoust Soc Am 122(5):EL151–EL157

    Article  Google Scholar 

  • Aı̈tcin PC (2000) Cements of yesterday and today: concrete of tomorrow. Cem Concr Res 30(9):1349–1359

  • Al-Mufti RL, Fried AN (2012) The early age non-destructive testing of concrete made with recycled concrete aggregate. Constr Build Mater 37:379–386

    Article  Google Scholar 

  • ASTM C1260–07 (2007) Standard test method for potential alkali reactivity of aggregates (Mortar-bar method). ASTM International, West Conshohocken

  • Berra M, Mangialardi T, Paolini AE (2018) Alkali release from aggregates in long-service concrete structures: laboratory test evaluation and ASR prediction. Materials 11(8):1393

    Article  Google Scholar 

  • Bérubé MA, Smaoui N, Fournier B, Bissonnette B, Durand B (2005) Evaluation of the expansion attained to date by concrete affected by alkali–silica reaction. Part III: application to existing structures. Can J Civ Eng 32(3):463–479

    Article  Google Scholar 

  • Boukari Y, Bulteel D, Rivard P, Abriak NE (2015) Combining nonlinear acoustics and physico-chemical analysis of aggregates to improve alkali–silica reaction monitoring. Cem Concr Res 67:44–51

    Article  Google Scholar 

  • Broekmans MA (2012) Deleterious reactions of aggregate with alkalis in concrete. Rev Mineral Geochem 74(1):279–364

    Article  Google Scholar 

  • Carette J, Staquet S (2015) Monitoring the setting process of mortars by ultrasonic P and S-wave transmission velocity measurement. Constr Build Mater 94:196–208

    Article  Google Scholar 

  • Carette J, Staquet S (2016) Monitoring and modelling the early age and hardening behaviour of eco-concrete through continuous non-destructive measurements: part II. Mechanical behaviour. Cem Concr Compos 73:1–9

    Article  Google Scholar 

  • Chaix JF, Garnier V, Corneloup G (2006) Ultrasonic wave propagation in heterogeneous solid media: theoretical analysis and experimental validation. Ultrasonics 44:200–210

    Article  Google Scholar 

  • Del Río LM, Jiménez A, López F, Rosa FJ, Rufo MM, Paniagua JM (2004) Characterization and hardening of concrete with ultrasonic testing. Ultrasonics 42(1-9):527–530

    Article  Google Scholar 

  • Elvery RH, Ibrahim LAM (1976) Ultrasonic assessment of concrete strength at early ages. Mag Concr Res 28(97):181–190

    Article  Google Scholar 

  • Fernandes I (2015) Role of granitic aggregates in the deterioration of a concrete dam. Bull Eng Geol Environ 74(1):195–206

    Article  Google Scholar 

  • Fernandes I, Noronha F, Teles M (2007) Examination of the concrete from an old Portuguese dam: texture and composition of alkali–silica gel. Mater Charact 58(11-12):1160–1170

    Article  Google Scholar 

  • Fookes PG (1980) An introduction to the influence of natural aggregates on the performance and durability of concrete. Q J Eng Geol Hydrogeol 13(4):207–229

    Article  Google Scholar 

  • Fookes PG (1997) Aggregates: a review of prediction and performance. In: Glanville J, Neville A (eds) Prediction of concrete durability: proceedings of STATS 21st Anniversary Conference. E & FN Spon, London, pp 91–170

  • Fookes PG, Walker MJ (2010) Concrete: a man-made rock? Geol Today 26(2):65–71

    Article  Google Scholar 

  • Fookes PG, Walker MJ (2012) Natural aggregates in the performance and durability of concrete: chemical characteristics. Geol Today 28(1):20–25

    Article  Google Scholar 

  • Fournier B, Bérubé MA (2000) Alkali-aggregate reaction in concrete: a review of basic concepts and engineering implications. Can J Civ Eng 27(2):167–191

    Article  Google Scholar 

  • Fournier B, Bérubé MA, Folliard K, Thomas MDA (2010) Report on the diagnosis, prognosis, and mitigation of alkali-silica reaction (ASR) in transportation structures. US Department of Transportation, Federal Highway Administration, Publication FHWA-HIF-09-004

  • Fujii I, Kawashima K (1995) Digital measurement of ultrasonic velocity. In: Thompson DO, Chimenti DE (eds) Review of Progress in Quantitative Nondestructive Evaluation, vol 14. Plenum Press, New York, pp 203–209

  • Gambhir ML (2013) Concrete technology. McGraw Hill Education, New Delhi

  • Ghanem H, Zollinger D, Lytton R, Ghanem N (2012) Determining ASR characteristics using dilatometer method. Constr Build Mater 36:1008–1015

    Article  Google Scholar 

  • Grattan-Bellew PE (1997) A critical review of ultra-accelerated tests for alkali-silica reactivity. Cem Concr Compos 19(5-6):403–414

    Article  Google Scholar 

  • Hernandez MG, Anaya JJ, Ullate LG, Cegarra M, Sanchez T (2006) Application of a micromechanical model of three phases to estimating the porosity of mortar by ultrasound. Cem Concr Res 36(4):617–624

    Article  Google Scholar 

  • Hobbs B, Kebir MT (2007) Non-destructive testing techniques for the forensic engineering investigation of reinforced concrete buildings. Foren Sci Int 167(2-3):167–172

    Article  Google Scholar 

  • Hoła J, Schabowicz K (2010) State-of-the-art non-destructive methods for diagnostic testing of building structures–anticipated development trends. Arch Civil Mech Eng 10(3):5–18

    Article  Google Scholar 

  • Jones R (1949) The non-destructive testing of concrete. Mag Concr Res 1(2):67–78

    Article  Google Scholar 

  • Kim G, Giannini E, Klenke N, Kim JY, Kurtis KE, Jacobs LJ (2017) Measuring alkali-silica reaction (ASR) microscale damage in large-scale concrete slabs using nonlinear Rayleigh surface waves. J Nondestruct Eval 36(2):1–6

    Article  Google Scholar 

  • Kim G, Park S, Kim JY, Kurtis KE, Hayes NW, Jacobs LJ (2018a) Nonlinear Rayleigh surface waves to characterize microscale damage due to alkali-silica reaction (ASR) in full-scale, nuclear concrete specimens. Constr Build Mater 186:1114–1118

    Article  Google Scholar 

  • Kim G, Loreto G, Kim JY, Kurtis KE, Wall JJ, Jacobs LJ (2018b) In situ nonlinear ultrasonic technique for monitoring microcracking in concrete subjected to creep and cyclic loading. Ultrasonics 88:4–71

    Article  Google Scholar 

  • Kodjo AS, Rivard P, Cohen-Tenoudji F, Gallias JL (2011) Impact of the alkali–silica reaction products on slow dynamics behavior of concrete. Cem Concr Res 41(4):422–428

    Article  Google Scholar 

  • Korkanç M, Tuğrul A (2004) Evaluation of selected basalts from Niğde, Turkey, as source of concrete aggregate. Eng Geol 75(3-4):291–307

    Article  Google Scholar 

  • Kuchařová A, Götze J, Šachlová Š, Pertold Z, Přikryl R (2016) Microscopy and cathodoluminescence spectroscopy characterization of quartz exhibiting different alkali-silica reaction potential. Microsc Microanal 22(1):189–198

    Article  Google Scholar 

  • Lee HK, Lee KM, Kim YH, Yim H, Bae DB (2004) Ultrasonic in-situ monitoring of setting process of high-performance concrete. Cem Concr Res 34(4):631–640

    Article  Google Scholar 

  • Lindgård J, Andiç-Çakır Ö, Fernandes I, Rønning TF, Thomas MD (2012) Alkali–silica reactions (ASR): literature review on parameters influencing laboratory performance testing. Cem Concr Res 42(2):223–243

    Article  Google Scholar 

  • Lindgård J, Thomas MD, Sellevold EJ, Pedersen B, Andiç-Çakır Ö, Justnes H, Rønning TF (2013) Alkali–silica reaction (ASR)—performance testing: influence of specimen pre-treatment, exposure conditions and prism size on alkali leaching and prism expansion. Cem Concr Res 53:68–90

    Article  Google Scholar 

  • Lokajíček T, Kuchařová A, Petružálek M, Šachlová Š, Svitek T, Přikryl R (2016) Semi-continuous ultrasonic sounding and changes of ultrasonic signal characteristics as a sensitive tool for the evaluation of ongoing microstructural changes of experimental mortar bars tested for their ASR potential. Ultrasonics 71:40–50

    Article  Google Scholar 

  • Lokajíček T, Přikryl R, Šachlová Š, Kuchařová A (2017) Acoustic emission monitoring of crack formation during alkali silica reactivity accelerated mortar bar test. Eng Geol 220:175–182

    Article  Google Scholar 

  • Lu D, Fournier B, Grattan-Bellew PE (2006) Evaluation of accelerated test methods for determining alkali-silica reactivity of concrete aggregates. Cem Concr Compos 28(6):546–554

    Article  Google Scholar 

  • Malhotra VM, Carino NJ, eds (2004) Handbook on nondestructive testing of concrete. CRC Press, Boca Raton

  • Mavko G, Mukerij T, Dvorkin J (2009) The Rock Physics Handbook, 2nd edn. Cambridge University Press, New York

  • Monteiro PJ, Kurtis KE (2003) Time to failure for concrete exposed to severe sulfate attack. Cem Concr Res 33(7):987–993

    Article  Google Scholar 

  • Nelson TI, Bolen WP (2007) Construction aggregates. Min Eng 59(6):26–27

    Google Scholar 

  • Nilsen AU, Aitcin PC (1992) Static modulus of elasticity of high-strength concrete from pulse velocity tests. Cem Concr Aggreg 14(1):64–66

    Article  Google Scholar 

  • Papadakis EP (1976) Ultrasonic velocity and attenuation: measurement methods with scientific and industrial applications. Physic Acous 12:277–374

    Article  Google Scholar 

  • Papadakis VG, Vayenas CG, Fardis MN (1991) Physical and chemical characteristics affecting the durability of concrete. Dent Mater J 88(2):186–196

    Google Scholar 

  • Popovics S, Rose JL, Popovics JS (1990) The behaviour of ultrasonic pulses in concrete. Cem Concr Res 20(2):259–270

    Article  Google Scholar 

  • Přikryl R (2017) Constructional geomaterials: versatile earth resources in the service of humankind—introduction to the thematic set of papers on: challenges to supply and quality of geomaterials used in construction. Bull Eng Geol Environ 76(1):1–9

    Article  Google Scholar 

  • Přikryl R, Török Á, Gómez-Heras M, Miskovsky K, Theodoridou M (2016) Geomaterials in construction and their sustainability: understanding their role in modern society. In: Přikryl R, Török Á, Gómez-Heras M, Miskovsky K, Theodoridou M (eds) Sustainable use of traditional geomaterials in construction practice, The Geological Society, London, Special Publications, vol, vol 416, pp 1–22

  • Qasrawi HY (2000) Concrete strength by combined nondestructive methods simply and reliably predicted. Cem Concr Res 30(5):739–746

    Article  Google Scholar 

  • Reinhardt HW, Grosse CU (2004) Continuous monitoring of setting and hardening of mortar and concrete. Constr Build Mater 18(3):145–154

    Article  Google Scholar 

  • Rio LM, Jimenez A, Lopez F, Rosa FJ, Rufo MM, Paniagua JM (2004) Characterization and hardening of concrete with ultrasonic testing. Ultrasonics 42:527–530

    Article  Google Scholar 

  • Rivard P, Ballivy G (2005) Assessment of the expansion related to alkali-silica reaction by the Damage Rating Index method. Constr Build Mater 19(2):83–90

    Article  Google Scholar 

  • Šachlová Š, Kuchařová A, Pertold Z, Přikryl R (2016) Evaluation of alkali-silica reaction potential of quartz rich rocks by alkaline etching of polished rock sections. Environ Earth Sci 75(9):1–14

    Article  Google Scholar 

  • Šachlová Š, Kuchařová A, Pertold Z, Přikryl R, Fridrichová M (2017) Quantitative assessment of alkali silica reaction potential of quartz-rich aggregates: comparison of chemical test and accelerated mortar bar test improved by SEM-PIA. Bull Eng Geol Environ 76(1):133–144

    Article  Google Scholar 

  • Sanchez LFM, Fournier B, Jolin M, Duchesne J (2015) Reliable quantification of AAR damage through assessment of the Damage Rating Index (DRI). Cem Concr Res 67:74–92

    Article  Google Scholar 

  • Sargolzahi M, Kodjo SA, Rivard P, Rhazi J (2010) Effectiveness of nondestructive testing for the evaluation of alkali–silica reaction in concrete. Constr Build Mater 24(8):1398–1403

    Article  Google Scholar 

  • Selleck SF, Landis EN, Peterson ML, Shah SR, Achenbach JD (1998) Ultrasonic investigation of concrete with distributed damage. ACI Mater J 95:27–36

    Google Scholar 

  • Shiotani T, Aggelis DG (2009) Wave propagation in cementitious material containing artificial distributed damage. Mater Struct 42(3):377–384

    Article  Google Scholar 

  • Sims I, Nixon P (2003) RILEM recommended test method AAR-1: detection of potential alkali-reactivity of aggregates—petrographic method. Mater Struct 36(7):480–496

    Article  Google Scholar 

  • Solis-Carcaño R, Moreno EI (2008) Evaluation of concrete made with crushed limestone aggregate based on ultrasonic pulse velocity. Constr Build Mater 22(6):1225–1231

    Article  Google Scholar 

  • Soltangharaei V, Anay R, Ai L, Giannini ER, Zhu J, Ziehl P (2020) Temporal evaluation of ASR cracking in concrete specimens using acoustic emission. J Mater Civ Eng 32(10):04020285

    Article  Google Scholar 

  • Šťastná A, Šachlová Š, Pertold Z, Přikryl R (2015) Factors affecting alkali-reactivity of quartz-rich metamorphic rocks: qualitative vs. quantitative microscopy. Eng Geol 187:1–9

    Article  Google Scholar 

  • Swamy RN, Al-Asali MM (1988) Engineering properties of concrete affected by alkali-silica reaction. Dent Mater J 85(5):367–374

    Google Scholar 

  • Swamy N, Rigby G (1971) Dynamic properties of hardened paste, mortar and concrete. Mater Constr 4(1):13–40

    Article  Google Scholar 

  • Świt G, Zapała-Sławeta J (2020) Application of acoustic emission to monitoring the course of the alkali-silica reaction. B Pol Acad Sci-Tech 68(1):169–178

    Google Scholar 

  • Taffesea WZ, Sistonen E (2013) Service life prediction of repaired structures using concrete recasting method: state-of-the-art. Procedia Eng 57:1138–1144

    Article  Google Scholar 

  • Tharmaratnam K, Tan BS (1990) Attenuation of ultrasonic pulse in cement mortar. Cem Concr Res 20(3):335–345

    Article  Google Scholar 

  • Thomas M, Folliard K, Drimalas T, Ramlochan T (2008) Diagnosing delayed ettringite formation in concrete structures. Cem Concr Res 38(6):841–847

    Article  Google Scholar 

  • Trtnik G, Gams M (2015) Ultrasonic assessment of initial compressive strength gain of cement based materials. Cem Concr Res 67:148–155

    Article  Google Scholar 

  • Voigt T, Grosse CU, Sun Z, Shah SP, Reinhardt HW (2005) Comparison of ultrasonic wave transmission and reflection measurements with P-and S-waves on early age mortar and concrete. Mater Struct 38(8):729–738

    Article  Google Scholar 

Download references

Acknowledgement

This study was partly +ported by the Czech Science Foundation project 18-08826S and by the Czech Academy of Sciences project RVO 67985831.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Přikryl.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lokajíček, T., Petružálek, M., Svitek, T. et al. Dynamic elastic properties of hardened experimental mortar bars affected by accelerated alkali–silica reactivity test: a laboratory approach. Bull Eng Geol Environ 80, 8921–8933 (2021). https://doi.org/10.1007/s10064-021-02251-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10064-021-02251-0

Keywords

Navigation