Skip to main content
Log in

Hydrogeology of the deepest underwater cave in the world: Hranice Abyss, Czechia

Hydrogéologie de la plus profonde cavité en milieu noyé dans le monde: l’abysse Hranice, Tchéquie

Hidrogeología de la cueva submarina más profunda del mundo: Hranice Abyss, República Checa

世界上最深水下洞穴(捷克赫拉尼采深渊)的水文地质

Hydrogeologie nejhlubší zatopené propasti světa: Hranická propast, Česká republika

Hidrogeologia da mais profunda caverna submersa do mundo: Hranice Abyss, República Tcheca

  • Report
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

Little is known about water mixing in deep underwater cave shafts of hypogene karst. The Hranice Abyss (HA) in Czechia is currently the deepest underwater cave in the world. It shares a thermal and CO2-rich water source with an adjacent spa. Based on chemical and isotope composition, water in the HA is a mixture of shallow and thermal groundwaters. The shallow local groundwater is distinctly different from the adjacent Bečva River water in its elemental chemistry and sulfate δ34S values. The thermal water is mixed with 5–10% of modern water, based on tritium content and chlorofluorocarbons. Vertical profiling and deep sampling in the HA showed distinct changes with depth in temperature and TDS. Density-driven flow controls the mixing. In winter, the shallow water of the open HA lake is efficiently cooled; the denser surface water sinks to greater depths, which mixes the water column in the HA. During the summer the shallow water stagnates at the depth of 0–15 m. Periods of stagnation and of accelerated water flow and mixing in the HA perfectly fit with the periodic occurrence of CO2 evasion in the lake and the overall characteristics of the microbial communities, which showed the absence of any functional stratification. Ferric oxyhydroxide precipitation is the major cause for turbidity in the HA. Elevation-specific hydraulic responses of the HA groundwater, caused by the adjacent river’s level pulses, enabled a determination of the points along the river course at which the river is connected to groundwater by karst conduits.

Résumé

On sait peu de chose sur le mélange d’eau dans puits profonds de cavité noyée du karst hypogénique. L’Abysse d’Hranice (AH) en Tchéquie est actuellement la cavité en milieu noyé la plus profonde eau monde. Il partage une source d’eau thermale et riche en CO2 avec des bains thermaux adjacents. Sur la base de la composition chimique et isotopique, l’eau dans HA est un mélange d’eaux souterraines peu profondes et thermales. Les eaux souterraines locales peu profondes sont nettement différentes de l’eau de la rivière adjacente Bečva dans leurs valeurs en chimie élémentaire et en δ34S. L’eau thermale est un mélange avec 5–10% d’eau récente, à partir des teneurs en tritiums et de chlorofluorocarbones. Des profils verticaux et des échantillonnages en profondeur dans l’AH ont montré des variations distinctes avec la profondeur de la température et des solides dissous totaux. L’écoulement piloté par la densité contrôle le mélange. En hiver, l’eau peu profonde du lac ouvert de l’AH est refroidie efficacement; l’eau de surface plus dense plonge vers les plus grandes profondeurs, ce qui a pour effet de mélanger la colonne d’eau dans l’AH. Au cours de l’été, l’eau peu profonde stagne à une profondeur de 0 à 15m. Les périodes de stagnation et d’écoulement d’eau accéléré et le mélange dans l’AH sont parfaitement corrélées avec l’occurrence périodique d’émergence de CO2 dans le lac et les caractéristiques générales des communautés microbiennes, qui ont montré l’absence de toute stratification fonctionnelle. La précipitation de l’oxyhydroxyde ferrique est la cause principale de la turbidité dans l’AH. Les réponses hydrauliques spécifiques à l’élévation des eaux souterraines de l’AH, causées par les impulsions du niveau de la rivière adjacente, ont permis de déterminer les points le long du cours d’eau où la rivière est connectée à l’eau souterraine par des conduits karstiques.

Resumen

Poco se sabe sobre la mezcla de agua en los pozos profundos de las cuevas submarinas del karst hipógeno. El Hranice Abyss (HA) en la República Checa es actualmente la cueva submarina más profunda del mundo. Comparte una fuente de agua térmica y rica en CO2 con un balneario adyacente. Basado en la composición química e isotópica, el agua en la HA es una mezcla de aguas subterráneas poco profundas y térmicas. El agua subterránea local poco profunda es claramente diferente del agua adyacente del Bečva River en su química elemental y en los valores de sulfato δ34S. El agua termal se mezcla con un 5–10% de agua moderna, de acuerdo con los datos de tritio y clorofluorocarbonos. La elaboración de perfiles verticales y el muestreo profundo en la HA mostraron distintos cambios con la profundidad de la temperatura y el TDS. El flujo por densidad controla la mezcla. En invierno, las aguas poco profundas del lago HA se enfrían eficientemente; las aguas superficiales más densas se hunden a mayores profundidades, lo que mezcla la columna de agua en la HA. Durante el verano, las aguas poco profundas se estancan a una profundidad de 0–15 m. Los períodos de estancamiento y de flujo de agua acelerado y la mezcla en la HA encajan perfectamente con la ocurrencia periódica de evasión de CO2 en el lago y con las características generales de las comunidades microbianas, que mostraron la ausencia de estratificación funcional. La precipitación de oxhidróxido férrico es la principal causa de turbidez en la HA. Las respuestas hidráulicas específicas de elevación de las aguas subterráneas de la HA, causadas por los pulsos de nivel del río adyacente, permitieron determinar los puntos a lo largo del curso del río en los que el río está conectado con el agua subterránea por conductos cársticos.

摘要

人们对低温喀斯特的深部水下洞穴中水混合作用了解很少。捷克的赫拉尼采深渊(HA)是目前世界上最深的水下洞穴。它与相邻的水疗中心是一个热源和富含二氧化碳的水源。根据化学和同位素组成,HA中的水是由浅层地下水和热水的混合而成。浅层本地地下水与其相邻的Bečva河水元素的化学性质和硫酸盐δ34S值明显不同。根据氚和CFC同位素,热水与5–10%的现代水混合。HA中垂直剖面和深度采样表明温度和TDS随深度呈现明显变化。密度驱动流控制了混合作用。在冬季,开放式HA湖的浅水被有效冷却;密度大的地表水下沉到更深部,由此混合了HA中的水柱。在夏季,浅水停留在0–15 m深度。HA中停滞和加速水流与混合的时期与湖中CO2逃逸的周期性以及微生物群落总体特征完全一致,这表明没有任何功能性分层。羟基氧化铁的沉淀是HA中水浑浊的主要原因。由邻近河流水位脉冲引起的HA地下水特定高程的水力响应可以确定岩溶管道与地下水交互的河道的点位。

Abstrakt

Charakter proudění podzemní vody v hlubokých zatopených jeskynních prostorách hypogenního krasu představuje málo prozkoumanou problematiku. Hranická propast (HA) v České republice je v současné době nejhlubší zatopenou propastí na světě. V propasti se vyskytují přítoky termální minerální vody bohaté na CO2, která je v přilehlém okolí lázeňsky využívána. Analýzy chemického a izotopového složení prokázaly, že voda v Hranické propasti je směsí méně mineralizované chladnější podzemní vody z mělkého zdroje a termální minerální vody hlubšího původu. Podzemní voda z mělkého zdroje se svým chemickým složením a hodnotami δ34S výrazně odlišuje od vody nedaleké řeky Bečvy. Na základě analýzy aktivity tritia a obsahu CFC má termální voda příměs 5–10 % moderní vody. Vertikální profilování a odběry hlubinných vzorků vody v Hranické propasti ukázaly výrazné změny teploty a obsahu rozpuštěných látek s hloubkou. Míšení a proudění vody v propasti je řízeno hustotním gradientem. V zimním období se voda Jezírka v Hranické propasti ochlazuje. Chladnější voda o vyšší hustotě klesá od hladiny do větších hloubek, což způsobuje míchání vody ve vodním sloupci propasti. V létě dochází k stagnaci vody v hloubkovém rozpětí 0−15 m pod hladinou. Střídání období stagnace a zvýšeného proudění vody v Hranické propasti koresponduje s obdobími výskytu evaze CO2 při hladině Jezírka. Navržené schéma proudění je v souladu s charakterem mikrobiálních komunit, které vykazují absenci jakékoliv funkční stratifikace. Srážení Fe3+ se jeví jako hlavní příčina vzniku zákalu ve vodě Hranické propasti. Sledování změn nadmořské výšky hladiny vody v Hranické propasti při oscilaci hladiny řeky Bečvy umožnilo stanovení míst podél toku řeky, kde dochází k hydraulické komunikaci řeky s podzemní vodou skrze krasové kanály.

Resumo

Pouco é conhecido sobre a mistura de águas em condutos profundos de cavernas submersas em carste hipogênico. A caverna Hranice Abyss (HA) na República Tcheca é atualmente a mais profunda caverna no mundo. Esta compartilha águas térmicas rica em CO2 com um spa adjacente. Baseado na composição química e isotópica, a água na HA é uma mistura de água subterrânea rasa e térmica. A água subterrânea local é distintamente diferente das águas do Rio Bečva adjacente nos elementos químicos e valores de sulfato δ34S. A água térmica é misturada com 5–10% de águas modernas, baseado no conteúdo de trítio e clorofluorocarbonos. Perfilagem vertical e amostragem profunda na HA mostrou distinta mudanças com a profundida e em temperatura e sólidos totais dissolvidos. O fluxo por densidade controla a mistura. No inverno, a água rasa do lago aberto da HA é eficientemente resfriada; a água superficial mais densa afunda para maiores profundidades misturando a coluna de água da HA. No verão a água rasa estagna nas profundidades de 0–15 m. Os períodos de estagnação e de acelerado fluxo de água e mistura na HA perfeitamente se encaixa com a periódica ocorrência de emissão de CO2 do lago e das características gerais da comunidade microbiológica, que mostra abstenção de qualquer função de estratificação. Precipitação de oxihidróxidos de ferro é a maior causa de turbidez na HA. A resposta da carga hidráulica das águas subterrâneas na HA, por conta dos pulsos dos níveis dos rios adjacentes, permite a determinação dos pontos de conexão entre o rio e as águas subterrâneas nos condutos cársticos.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Andrić I, Bonacci O (2014) Morphological study of Red Lake in Dinaric karst based on terrestrial laser scanning and sonar systems. Acta Carsolog 43(2–3):229–239

    Google Scholar 

  • Audra P, Palmer AN (2015) Research frontiers in speleogenesis: dominant processes, hydrological conditions and resulting cave patterns. Acta Carsolog 44(3):315–348

    Article  Google Scholar 

  • Auler AS (2017) Hypogene caves and karst of South America. In: Klimchouk A et al (eds) Hypogene karst regions and caves of the world. Springer, Heidelberg, Germany, 817–826 pp

  • Bögli A (1980) Karst hydrology and physical speleology. Springer, Heidelberg, Germany, 284 pp

  • Buzek F, Kadlecova R, Knezek M (2006) Model reconstruction of nitrate pollution of riverbank filtration using 15N and 18O data, Karany, Czech Republic. Appl Geochem 21:656–674

    Article  Google Scholar 

  • Caramanna G (2002) Exploring one of the world’s deepest sinkholes: the Pozzo del Merro (Italy). Underw Speleol 29(1):4–8

    Google Scholar 

  • Caramanna G, Malatesta R, Maroto-Valer MM (2012) Scientific diving techniques for the study of flooded sinkholes in Italy. Underw Technol 31(1):29–41

    Article  Google Scholar 

  • Clark ID, Fritz P (1997) Environmental isotopes in hydrogeology. Lewis, Boca Raton, FL

    Google Scholar 

  • Dleštík P, Bábek O (2013) Shallow geophysical mapping of surface of buried Hranice karst by electric resistivity tomography method (in Czech). Geolog výzkumy Moravě Slezku 20(1–2):174–177

    Google Scholar 

  • Edgar RC (2013) UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods 10:996–998

    Article  Google Scholar 

  • Farr M (1991) The darkness beckons: the history and development of cave diving. Diadem, London

    Google Scholar 

  • Field M (2002) A lexicon of cave and karst terminology with special reference to environmental karst hydrology. US EPA, Washington, DC. https://karstwaters.org/wp-content/uploads/2015/04/lexicon-cave-karst.pdf. Accessed 1 March 2019

  • Gary M (2002) Understanding Zacatón: exploration and initial interpretation of the worlds deepest known phreatic sinkhole and related karst features southern Tamaulipes, Mexico. Karst Frontiers, Karst Waters Institute Spec. Publ. 7:141–145

    Google Scholar 

  • Gary M (2017) Sistema Zacatón: volcanically controlled hypogenic karst, Tamaulipas, Mexico. In: Klimchouk A et al (eds) Hypogene karst regions and caves of the world. Springer, Heidelberg, Germany, pp 769–782

  • Geršl M (2009) Hranice karst (in Czech). In: Hromas J (ed) Jeskyně ČR, Chráněná území ČR, vol 14. AOPK ČR, Prague, pp 361–368

  • Geršl M (2016) Discrimination of the Hranice karst waters (Czech Republic) based on the archival data. Geosci Res Rep 49:247–252

    Google Scholar 

  • Geršl M, Konečný O (2018) Geological hazards resulting from the planned construction of a water dam “Skalička” near the Hranice Karst and the Hranice Abyss. Geosci Res Rep 51:75–79

    Google Scholar 

  • Geršl M, Geršlová E, Šimečková B (2012) Subcrustal CO2 flux measurement in the Hranice hydrothermal karst, methodology and first results. Geosci Res Rep 45:162–166

    Google Scholar 

  • Haur A, Hladíková J, Šmejkal V (1973) Procedure of direct conversion of Sulphates into SO2 for mass spectrometric analysis of sulphur. Isotopenpraxis Isotopes Environ Health Studies 9(9):329–331. https://doi.org/10.1080/10256017308543687

    Article  Google Scholar 

  • Hynie O, Kodym O (1936) Mineral water in spa Teplice nad Bečvou and reconstruction of their abstraction in 1932-34 (in Czech). Sborník Sbor St Geol Úst 11:61–109

    Google Scholar 

  • IAEA (2006) Use of chlorofluorocarbons in hydrology: a guidebook. International Atomic Energy Agency, Vienna

    Google Scholar 

  • IAEA/WMO (2018) Global network of isotopes in precipitation. The GNIP database. ttps://nucleus.iaea.org/wiser. Accessed 1 November 2018

  • Jurgens BC, Böhlke JK, Eberts SM (2012) TracerLPM (version 1): an Excel® workbook for interpreting groundwater age distributions from environmental tracer data. National Research Program; National Water-Quality Assessment Program. US Geol Surv Techniques Methods 4-F3

  • Katoh K, Asimenos G, Toh H (2009) Multiple alignment of DNA sequences with MAFFT. Methods Mol Biol 537:39–64

    Article  Google Scholar 

  • Klimchouk A, Palmer AN, De Waele J, Auler AS, Audra P (2017) Hypogene karst regions and caves of the world. Springer, Heidelberg, Germany

  • Krásný J, Císlerová M, Čurda S, Datel J, Dvořák J, Grmela Z, Hrkal H, Kříž H, Marszalek H, Šantrůček J, Šilar J (2012) Groundwaters of Czech Republic: regional hydrogeology of groundwaters and mineral waters. Czech Geological Survey, Prague

  • Lukeš J (2018) Hranická Propast, Schématická mapa, stav ke dni 1.1. 2017 [Hranice Abyss, schematic map, state at 1.1. 2017]. http://hranickapropast.cz/mapy/. Accessed 1 November 2018

  • Mayo AL, Bruthans J (2014) Using heat flow and radiocarbon ages to estimate the extent of recharge area of thermal springs in granitoid rock: example from southern Idaho batholith, USA. In: Sharp JM (ed) Fractured rock hydrogeology. IAH Selected Papers on Hydrogeology, vol 20. CRC, Boca Raton, FL, pp 225–240

  • Meyberg M, Rinne B (1995) Messung des 3He/4He Isotopenverhältnisses in Hranicka Propast [Measurement of the 3He/4He isotope ratio in Hranicka Propast]. Höhle 45(1):5–8

    Google Scholar 

  • Michalíček M, Procházková V, Sameš P (1988) Crude oil hydrogeology of northern Moravia in relation to borehole Potštát 1 (in Czech). GF P060071. http://www.geology.cz/app/asgi/asg.php?item=1&tt_=D&asgid=89103. Accessed 1 November 2018

  • Michalíček M, Maník R, Procházková V (1994) Geochemistry of selected mineral waters of Czechia (in Czech). GF P084572. http://www.geology.cz/app/asgi/asg.php?item=1&tt_=D&asgid=131372. Accessed 1 November 2018

  • Otava J (1995) Isotopic analysis and origin of CO2 in some Moravian caves. Acta Carsolog 24:339–446

    Google Scholar 

  • Otava J, Bábek O, Bubík M, Buriánek D, Čurda J, Franců J, Fürychová P, Geršl M, Gilíková H, Godány J, Havíř J, Havlín Nováková J, Krejčí O, Krejčí V, Lehotský T, Maštera L, Novotný R, Poul I, Sedláčková I, Skácelová D, Skácelová Z, Stráník Z, Švábenická L, Tomanová Petrová P (2016) Map and explanatory notes to geology map 1:25 000 Kelč 25-141 (in Czech). Czech Geological Survey, Prague

  • Palmer AN (2000) Hydrogeologic control of cave patterns. In: Ford D, Palmer AN, Dreybrodt W, Klimchouk A (eds) Evolution of karst aquifers. National Speleological Society, Huntsville, AL, pp 77–90

  • Parkhurst DL, Appelo DCJ (2013) Description of input and examples for PHREEQC version 3: a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. In: Techniques and methods, book 6 (Modeling techniques), section-A, chap 43. US Geological Survey, Reston, VA

  • Pavlik I, Gersl M, Bartos M, Ulmann V, Kaucka P, Caha J, Unc A, Hubelova D, Konecny O, Modra H (2018) Nontuberculous mycobacteria in the environment of Hranice Abyss the world’s deepest flooded cave (Hranice karst, Czech Republic). Environ Sci Pollut Res 25:23712–23724

    Article  Google Scholar 

  • Pelikán V, Řezníček V (1963) Report on hydrogeology survey Černotín (in Czech). GF P016940. http://www.geology.cz/app/asgi/asg.php?item=1&tt_=D&asgid=102032. Accessed 1 November 2018

  • Penna D, Stenni B, Šanda M, Wrede S, Bogaard TA, Gobbi A, Borga M, Fischer BMC, Bonazza M, Chárová Z (2010) On the reproducibility and repeatability of laser absorption spectroscopy measurements for δ2H and δ18O isotopic analysis. Hydrol Earth Syst Sci 14:1551–1566. https://doi.org/10.5194/hess-14-1551-2010

    Article  Google Scholar 

  • Řezníček V (1981) Teplice nad Bečvou–Abyss, hydrogeology evaluation (in Czech). GF P033102. http://www.geology.cz/app/asgi/asg.php?item=1&tt_=D&asgid=55280. Accessed 1 November 2018

  • Roth Z (1962) Geology map 1:200 000, M -33-XXIV, sheet Olomouc. Geofond, Prague

  • Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB et al (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541

    Article  Google Scholar 

  • Špaček P, Bábek O, Štěpančíková P, Švancara J, Pazdírková J, Sedláček J (2015) The Nysa-Morava zone: an active tectonic domain with Late Cenozoic sedimentary grabens in the Western Carpathians foreland (NE Bohemian Massif). Int J Earth Sci (Geol Rundsch) 104:963–990

    Article  Google Scholar 

  • Stamatakis A (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30:1312–1313

    Article  Google Scholar 

  • Švajner L (1982) Hydrogeology of mineral waters in Teplice nad Bečvou (in Slovak). Diploma Thesis, University of Komensky, Bratislava, Slovakia

  • Větrovský T, Baldrian P (2013) Analysis of soil fungal communities by amplicon pyrosequencing: current approaches to data analysis and the introduction of the pipeline SEED. Biol Fertil Soils 49:1027–1037

    Article  Google Scholar 

  • Vysoká H, Bruthans J, Žák K, Mls J (2012) Response of the karst phreatic zone to flood events in a major river (Bohemian Karst, Czech Republic) and its implication for cave genesis. J Cave Karst Studies 74:65–81

    Article  Google Scholar 

Download references

Acknowledgements

The authors greatly appreciate the help of several individuals and organizations. The sampling, probing, and mapping was mainly done by divers of the Hranice Karst caving club (Czech Speleological Society), namely: V. Benda, L. Brychlec, D. Čani, L. Čech, M. Guba, Z. Hoferek, T. Ježek, V. Krmelín, M. Lukáš, J. Lukeš, J. Musil, V. Mickerts, J. Pišl, M. Prachař, M. Strnad, J. Suchoň, L. Vaněk, V. Žůrek, and in some cases in cooperation with K. Starnawski (National Geographic project HA-step beyond 400 m). The Lola Co. participated in the construction of the deep sampler, specialized diving devices, and development of the dataloggers. The water level and temperature in the HA and Spa were provided by the Automatic Sensing Co. (J. and O. Záruba), Lázně Teplice nad Bečvou Co., and the KOCMAN Envimonitoring Co. The Cement Hranice Co. provided the report with the hydrogeology data. Czech Hydrometeorological Institute provided the Bečva River level data. J. Grundloch provided the geodetical field measurements. We further wish to thank Geoding Co. and Aquatest Co. for measurements and analyses and M. Filippi, V. Goliáš, D. Hutňan, D. Koloušek, P. Mikysek, J. Novotná, J. Nycz, J. Unučka, J. Steinová, J. Žárský, M. Šanda, and G. Caramanna for their help and consultation, as well as M. Slavík and two reviewers (A. Auler and K. Cunningham) for valuable critical comments.

Funding

Financial support for sampling, measurements, and analysis was provided by the Neuron Fund for the support of science (Expedition Neuron project: Hydrogeology of the Hranice Abyss held by H. Vysoká in 2015–2016). Further minor support was provided by the SG Geotechnika Co. (H. Vysoká), RVO67985831 (K. Žák).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Bruthans.

Electronic supplementary material

ESM 1

(PDF 494 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vysoká, H., Bruthans, J., Falteisek, L. et al. Hydrogeology of the deepest underwater cave in the world: Hranice Abyss, Czechia. Hydrogeol J 27, 2325–2345 (2019). https://doi.org/10.1007/s10040-019-01999-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-019-01999-w

Keywords

Navigation