Skip to main content
Log in

Summer thermal comfort in Czech cities: measured effects of blue and green features in city centres

  • Special Issue: 1st European Biometeorologists Meeting
  • Published:
International Journal of Biometeorology Aims and scope Submit manuscript

Abstract

This study consists of nine case studies addressing thermal comfort in the public areas of city centres, with particular emphasis on the measurable effects of blue and green infrastructure on thermal exposure. Daytime on-site measurements were taken in summer in the paved areas of squares, in the proximity of water fountains, and in the shade of trees in order to evaluate levels of heat stress based on the universal thermal climate index (UTCI). The differences in UTCI values between the research points confirm substantial cooling associated with high vegetation (trees induced differences up to 10.5 °C in UTCI), while the measurable cooling effect of low vegetation was negligible (not more than 2.3 °C UTCI). It was also quite low around water fountains, spray fountains, and misting systems. It follows that municipal authorities should consider the differences in cooling effect potential of individual types of blue and green infrastructure when incorporating climate adaptation measures into urban planning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ali-Toudert F, Mayer H (2007) Effects of asymmetry, galleries, overhanging façades and vegetation on thermal comfort in urban street canyons. Sol Energy 81:742–754

    Article  Google Scholar 

  • Arsenović D, Savić S, Lužanin Z, Radić I, Milošević D, Arsić M (2019a) Heat-related mortality as an indicator of population vulnerability in a mid-sized central European city (Novi Sad, Serbia, summer 2015). Geogr Pannonica 23(4):204–215

    Article  Google Scholar 

  • Arsenović D, Lehnert M, Fiedor D, Šimáček P, Středová H, Středa T, Savić S (2019b) Heat-waves and mortality in Czech cities: a case study for the summers of 2015 and 2016. Geogr Pannonica 23(3):162–172

    Article  Google Scholar 

  • Aubrechtová T, Geletič J, Halásová O, Lehnert M, Dobrovolný P (2019) Administrativní reakce českých měst na adaptační procesy související s klimatickými změnami. Urbanismus a územní rozvoj 22(1):4–12

    Google Scholar 

  • Bajšanski IV, Milošević DD, Savić SM (2015) Evaluation and improvement of outdoor thermal comfort in urban areas on extreme temperature days: applications of automatic algorithms. Build Environ 94:632–643

    Article  Google Scholar 

  • Balchin WGV, Pye N (1947) A micro-climatological investigation of bath and the surrounding district. Q J R Meteorol Soc 73(317–318):297–323

    Article  Google Scholar 

  • Bongardt B (2006) Stadtklimatologische Bedeutung kleiner Parkanlagen: dargestellt am Beispiel des Dortmunder Westparks (Essener Ökologische Schriften, Bd. 24). Westarp Wissenschaften, Hohenwarsleben

  • Bosselmann P, Flores J, Gray W, Priestley T, Anderson R, Arens E, Dowty P, So S, Kim JJ (1984) Sun, wind and comfort: a study of open spaces and sidewalks in four downtown areas. Institute of Urban and Regional Development, University of California, Berkeley

  • Bosselmann P, Dake K, Fountain M (1988) Sun, wind and comfort: a field study of thermal comfort in San Francisco. Center for Environmental Design Research, University of California, Berkeley

    Google Scholar 

  • Broadbent AM, Coutts AM, Tapper NJ, Demuzere M, Beringer J (2018) The microscale cooling effects of water sensitive urban design and irrigation in a suburban environment. Theor Appl Climatol 134(1–2):1–23

    Article  Google Scholar 

  • Bröde P, Fiala D, Błażejczyk K, Holmér I, Jendritzky G, Kampmann B, Tinz B, Havenith G (2012) Deriving the operational procedure for the universal thermal climate index (UTCI). Int J Biometeorol 56(3):481–494

    Article  Google Scholar 

  • Brown G, Schebella MF, Weber D (2014) Using participatory GIS to measure physical activity and urban park benefits. Landsc Urban Plan 121:34–44

    Article  Google Scholar 

  • Čeplová N, Kalusová V, Lososová Z (2017) Effects of settlement size, urban heat island and habitat type on urban plant biodiversity. Landsc Urban Plan 159:15–22

    Article  Google Scholar 

  • Chen L, Ng E (2012) Outdoor thermal comfort and outdoor activities: a review of research in the past decade. Cities 29(2):118–125

    Article  Google Scholar 

  • Chen YC, Lin TP, Matzarakis A (2014) Comparison of mean radiant temperature from field experiment and modelling: a case study in Freiburg, Germany. Theor Appl Climatol 118(3):535–551

    Article  Google Scholar 

  • Coccolo S, Kämpf J, Scartezzini JL, Pearlmutter D (2016) Outdoor human comfort and thermal stress: a comprehensive review on models and standards. Urban Clim 18:33–57

    Article  Google Scholar 

  • Cohen P, Potchter O, Matzarakis A (2013) Human thermal perception of coastal Mediterranean outdoor urban environments. Appl Geogr 37:1–10

    Article  Google Scholar 

  • Dobrovolný P, Krahula L (2015) The spatial variability of air temperature and nocturnal urban heat island intensity in the city of Brno, Czech Republic. Morav Geogr Rep 23(3):8–16

    Google Scholar 

  • Dunjić J (2019) Outdoor thermal comfort research in urban areas of Central and Southeast Europe: a review. Geographica Pannonica 23(4):359–373

    Article  Google Scholar 

  • Ebi K (2011) Climate change and health risks: assessing and responding to them through ‘adaptive management’. Health Aff 30(5):924–930

    Article  Google Scholar 

  • Eliasson I, Knez I, Westerberg U, Thorsson S, Lindberg F (2007) Climate and behaviour in a Nordic city. Landsc Urban Plan 82(1–2):72–84

    Article  Google Scholar 

  • Fiala D, Havenith G, Bröde P, Kampmann B, Jendritzky G (2012) UTCI-Fiala multi-node model of human heat transfer and temperature regulation. Int J Biometeorol 56(3):429–441

    Article  Google Scholar 

  • Fröhlich D, Matzarakis A (2016) A quantitative sensitivity analysis on the behaviour of common thermal indices under hot and windy conditions in Doha, Qatar. Theor Appl Climatol 124(1–2):179–187

    Article  Google Scholar 

  • Geletič J, Lehnert M, Savić S, Milošević D (2018) Modelled spatiotemporal variability of outdoor thermal comfort in local climate zones of the city of Brno, Czech Republic. Sci Total Environ 624:385–395

    Article  CAS  Google Scholar 

  • Geletič J, Lehnert M, Dobrovolný P, Žuvela-Aloise M (2019) Spatial modelling of summer climate indices based on local climate zones: expected changes in the future climate of Brno, Czech Republic. Clim Chang 152(3–4):487–502

    Article  Google Scholar 

  • Gulyás Á, Unger J, Matzarakis A (2006) Assessment of the microclimatic and human comfort conditions in a complex urban environment: modelling and measurements. Build Environ 41(12):1713–1722

    Article  Google Scholar 

  • Haines A, Kovats RS, Campbell-Lendrum D, Corvalan C (2006) Climate change and human health: impacts, vulnerability and public health. Lancet 367(9528):2101–2109

    Article  CAS  Google Scholar 

  • Havenith G, Fiala D, Błazejczyk K, Richards M, Bröde P, Holmér I, Rintamaki H, Benshabat Y, Jendritzky G (2012) The UTCI-clothing model. Int J Biometeorol 56(3):461–470

    Article  Google Scholar 

  • Höppe P (1999) The physiological equivalent temperature–a universal index for the biometeorological assessment of the thermal environment. Int J Biometeorol 43(2):71–75

    Article  Google Scholar 

  • Howard L (1833) The climate of London deduced from meteorological observations, made in the metropolis, and at various places around it, vol 1–3. Harvey and Darton, London

    Google Scholar 

  • ISO 7726 (1998) Ergonomics of the thermal environment - instruments for measuring physical quantities. International Organisation for Standardisation, Geneva

    Google Scholar 

  • Jendritzky G, Havenith G, Weihs P, Batchvarova E (2009) Towards a universal thermal climate index UTCI for assessing the thermal environment of the human being. Final Report COST Action 730, Freiburg

    Google Scholar 

  • Jendritzky G, de Dear R, Havenith G (2012) UTCI - why another thermal index? Int J Biometeorol 56(3):421–428

    Article  Google Scholar 

  • Jin H, Shao T, Zhang R (2017) Effect of water body forms on microclimate of residential district. Energy Procedia 134:256–265

    Article  Google Scholar 

  • Johansson E, Thorsson S, Emmanuel R, Krüger E (2014) Instruments and methods in outdoor thermal comfort studies–the need for standardization. Urban Clim 10:346–366

    Article  Google Scholar 

  • Kahila-Tani M, Broberg A, Kyttä M, Tyger T (2016) Let the citizens map—public participation GIS as a planning support system in the Helsinki master plan process. Plan Pract Res 31(2):195–214

    Article  Google Scholar 

  • Kántor N, Unger J (2011) The most problematic variable in the course of human-biometeorological comfort assessment—the mean radiant temperature. Open Geosci 3(1):90–100

    Article  Google Scholar 

  • Kántor N, Kovács A, Lin TP (2015) Looking for simple correction functions between the mean radiant temperature from the “standard black globe” and the “six-directional” techniques in Taiwan. Theor Appl Climatol 121(1–2):99–111

    Article  Google Scholar 

  • Kántor N, Kovács A, Takács Á (2016) Small-scale human-biometeorological impacts of shading by a large tree. Open Geosci 8(1):231–245

    Article  Google Scholar 

  • Kántor N, Chen L, Gál CV (2018) Human-biometeorological significance of shading in urban public spaces—summertime measurements in Pécs, Hungary. Landsc Urban Plan 170:241–255

    Article  Google Scholar 

  • Knez I, Thorsson S, Eliasson I, Lindberg F (2009) Psychological mechanisms in outdoor place and weather assessment: towards a conceptual model. Int J Biometeorol 53(1):101–111

    Article  Google Scholar 

  • Koc CB, Osmond P, Peters A (2018) Evaluating the cooling effects of green infrastructure: a systematic review of methods, indicators and data sources. Sol Energy 166:486–508

    Article  Google Scholar 

  • Kovács A, Németh Á (2012) Tendencies and differences in human thermal comfort in distinct urban areas in Budapest, Hungary. Acta Climatologica et Chorologica 46:115–124

    Google Scholar 

  • Kovats RS, Hajat S (2008) Heat stress and public health: a critical review. Annu Rev Public Health 29:41–55

    Article  Google Scholar 

  • Krč P (2019) Improved methods of weather forecasting applied in transportation. Dissertation, Czech Technical University, Faculty of Transportation

  • Kyselý J, Huth R (2004) Heat-related mortality in the Czech Republic examined through synoptic and ‘traditional’ approaches. Clim Res 25(3):265–274

    Article  Google Scholar 

  • Lakatos L, Gulyás Á (2003) Connection between phenological phases and urban heat island in Debrecen and Szeged, Hungary. Acta Climatologica et Chorologica 36-37:79–83

    Google Scholar 

  • Lee H, Holst J, Mayer H (2013) Modification of human-biometeorologically significant radiant flux densities by shading as local method to mitigate heat stress in summer within urban street canyons. Adv Meteorol:312572. https://doi.org/10.1155/2013/312572

  • Lee H, Mayer H, Chen L (2016) Contribution of trees and grasslands to the mitigation of human heat stress in a residential district of Freiburg, Southwest Germany. Landsc Urban Plan 148:37–50

    Article  Google Scholar 

  • Lee H, Mayer H, Kuttler W (2020) Impact of the spacing between tree crowns on the mitigation of daytime heat stress for pedestrians inside E-W urban street canyons under central European conditions. Urban For Urban Green 48:126558. https://doi.org/10.1016/j.ufug.2019.126558

    Article  Google Scholar 

  • Lehnert M, Geletič J, Dobrovolný P, Jurek M (2018) Temperature differences among local climate zones established by mobile measurements in two central European cities. Clim Res 75(1):53–64

    Article  Google Scholar 

  • Lenzholzer S (2010) Engrained experience—a comparison of microclimate perception schemata and microclimate measurements in Dutch urban squares. Int J Biometeorol 54(2):141–150

    Article  Google Scholar 

  • Lindberg F, Grimmond CSB (2011) The influence of vegetation and building morphology on shadow patterns and mean radiant temperatures in urban areas: model development and evaluation. Theor Appl Climatol 105(3–4):311–323

    Article  Google Scholar 

  • Luca O (2017) Considerations on climate strategies and urban planning: Bucharest case study. Theor Empir Res Urban Manag 12(1):53–59

    Google Scholar 

  • Mahdavi A, Kiesel K, Vuckovic M (2014) Empirical and computational assessment of the urban heat island phenomenon and related mitigation measures. Geogr Pol 87(4):505–516

    Article  Google Scholar 

  • Mahmoud AHA (2011) Analysis of the microclimatic and human comfort conditions in an urban park in hot and arid regions. Build Environ 46(12):2641–2656

    Article  Google Scholar 

  • Maronga B, Banzhaf S, Burmeister C, Esch T, Forkel R, Fröhlich D, Fuka V, Gehrke KF, Geletič J, Giersch S, Gronemeier T, Groß G, Heldens W, Hellsten A, Hoffmann F, Inagaki A, Kadasch E, Kanani-Sühring F, Ketelsen K, Khan BA, Knigge C, Knoop H, Krč P, Kurppa M, Maamari H, Matzarakis A, Mauder M, Pallasch M, Pavlik D, Pfafferott J, Resler J, Rissmann S, Russo E, Salim M, Schrempf M, Schwenkel J, Seckmeyer G, Schubert S, Sühring M, von Tils R, Vollmer L, Ward S, Witha B, Wurps H, Zeidler J, Raasch S (2020) Overview of the PALM model system 6.0. Geosci Model Dev 13:1335–1372

    Article  Google Scholar 

  • Mayer H, Höppe P (1987) Thermal comfort of man in different urban environments. Theor Appl Climatol 38:43–49

    Article  Google Scholar 

  • Mayer H, Kuppe S, Holst J, Imbery F, Matzarakis A (2009) Human thermal comfort below the canopy of street trees on a typical central European summer day. Berichte des Meteorologischen Instituts der Albert-Ludwigs-Universität Freiburg 18:211–219

    Google Scholar 

  • McWest LA, Broadbent AM, Vanos J, Georgescu M, Middel A (2019) Impacts of urban tree canopy and water features on the thermal environment. 99th Annual Meeting of the American Meteorological Society, Phoenix

    Google Scholar 

  • Middel A, Krayenhoff ES (2019) Micrometeorological determinants of pedestrian thermal exposure during record-breaking heat in Tempe, Arizona: introducing the MaRTy observational platform. Sci Total Environ 687:137–151

    Article  CAS  Google Scholar 

  • Milošević DD, Savić SM, Marković V, Arsenović D, Šećerov I (2016) Outdoor human thermal comfort in local climate zones of Novi Sad (Serbia) during heat wave period. Hung Geogr Bull 65(2):129–137

    Article  Google Scholar 

  • Milošević DD, Bajšanski IV, Savić SM (2017) Influence of changing trees locations on thermal comfort on street parking lot and footways. Urban For Urban Green 23:113–124

    Article  Google Scholar 

  • Morakinyo TE, Kong L, Lau KKL, Yuan C, Ng E (2017) A study on the impact of shadow-cast and tree species on in-canyon and neighborhood’s thermal comfort. Build Environ 115:1–17

    Article  Google Scholar 

  • Müller N, Kuttler W, Barlag AB (2014) Counteracting urban climate change: adaptation measures and their effect on thermal comfort. Theor Appl Climatol 115(1–2):243–257

    Article  Google Scholar 

  • Nikolopoulou M, Steemers K (2003) Thermal comfort and psychological adaptation as a guide for designing urban spaces. Energy Build 35(1):95–101

    Article  Google Scholar 

  • Nikolopoulou M, Baker N, Steemers K (1999) Thermal comfort in urban spaces: different forms of adaptation. Proceedings REBUILD International Conference: The Cities of Tomorrow, Barcelona, 4–6 October 1999

  • Oke TR (1987) Boundary layer climates, 2nd edn. Routledge, London

    Google Scholar 

  • Oliveira S, Andrade H, Vaz T (2011) The cooling effect of green spaces as a contribution to the mitigation of urban heat: a case study in Lisbon. Build Environ 46(11):2186–2194

    Article  Google Scholar 

  • Pánek J (2019) Mapping citizens’ emotions: participatory planning support system in Olomouc, Czech Republic. J Maps 15(1):8–12

    Article  Google Scholar 

  • Parsons K (2014) Human thermal environments: the effects of hot, moderate, and cold environments on human health, comfort, and performance, 3rd edn. CRC Press

  • Patz JA, Campbell-Lendrum D, Holloway T, Foley JA (2005) Impact of regional climate change on human health. Nature 438:310–317

    Article  CAS  Google Scholar 

  • Potchter O, Cohen P, Lin TP, Matzarakis A (2018) Outdoor human thermal perception in various climates: a comprehensive review of approaches, methods and quantification. Sci Total Environ 631:390–406

    Article  CAS  Google Scholar 

  • Rizwan AM, Dennis LY, Chunho LIU (2008) A review on the generation, determination and mitigation of urban heat island. J Environ Sci 20(1):120–128

    Article  CAS  Google Scholar 

  • Rosenzweig C, Solecki WD, Hammer SA, Mehrotra S (eds) (2018) Climate change and cities: second assessment report of the urban climate change research network. Cambridge University Press

  • Saaroni H, Ziv B (2003) The impact of a small lake on heat stress in a Mediterranean urban park: the case of Tel Aviv, Israel. Int J Biometeorol 47(3):156–165

    Article  Google Scholar 

  • Steeneveld GJ, Koopmans S, Heusinkveld BG, Theeuwes NE (2014) Refreshing the role of open water surfaces on mitigating the maximum urban heat island effect. Landsc Urban Plan 121:92–96

    Article  Google Scholar 

  • Stewart ID (2019) Why should urban heat island researchers study history? Urban Clim 30:100484. https://doi.org/10.1016/j.uclim.2019.100484

    Article  Google Scholar 

  • Stojakovic V, Bajsanski I, Savic S, Milosevic D, Tepavcevic B (2020) The influence of changing location of trees in urban green spaces on insolation mitigation. Urban For Urban Green 53:126721. https://doi.org/10.1016/j.ufug.2020.126721

    Article  Google Scholar 

  • Streiling S, Matzarakis A (2003) Influence of single and small clusters of trees on the bioclimate of a city: a case study. J Arboric 29(6):309–316

    Google Scholar 

  • Takács Á, Kiss M, Hof A, Tanács E, Gulyás Á, Kántor N (2016) Microclimate modification by urban shade trees–an integrated approach to aid ecosystem service based decision-making. Procedia Environ Sci 32:97–109

    Article  Google Scholar 

  • Vanos J, Hondula D, Middel A, Ambrose H, Kaiser A, Wright M (2019) Motivations to use water for thermal comfort: the influence of evaporative mister systems on thermal comfort in outdoor eateries. In International Conference UTCI – Assessment Measure in Human Bioclimatology – 10 Years of Application and 1st European Biometeorologists’ Regional Meeting, Warsaw

  • Vít V, Kopp J (2019) Typology of outdoor seating areas of restaurants based on factors influencing their thermal comfort. A case study of Pilsen city centre, Czechia. J Settl Spat Plan 10(2):131–142

    Google Scholar 

  • Völker S, Baumeister H, Classen T, Hornberg C, Kistemann T (2013) Evidence for the temperature-mitigating capacity of urban blue space—a health geographic perspective. Erdkunde 67(4):355–371

    Article  Google Scholar 

  • Wang J, Meng Q, Tan K, Zhang L, Zhang Y (2018) Experimental investigation on the influence of evaporative cooling of permeable pavements on outdoor thermal environment. Build Environ 140:184–193

    Article  Google Scholar 

  • Xu J, Wei Q, Huang X, Zhu X, Li G (2010) Evaluation of human thermal comfort near urban waterbody during summer. Build Environ 45(4):1072–1080

    Article  Google Scholar 

  • Zanobetti A, O’Neill MS, Gronlund CJ, Schwartz JD (2012) Summer temperature variability and long-term survival among elderly people with chronic disease. Proc Natl Acad Sci 109(17):6608–6613

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank all those who assisted with on-site measurements: Daniel Raška, Václav Vít, Olga Halásová, Lucia Brisudová and Tereza Aubrechtová. Tony Long, Dalmellington, Scotland, helped work up the English.

Funding

This research was supported by the project Identification of locations vulnerable to thermal stress: a tool for sustainable urban planning, grant ref. TJ01000118 from the Technology Agency of the Czech Republic, and by an internal grant from Palacký University, Olomouc ref. GA_PrF_2020_029 Spatial analysis of selected environmental and social issues in urban and suburban areas.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Jurek.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lehnert, M., Tokar, V., Jurek, M. et al. Summer thermal comfort in Czech cities: measured effects of blue and green features in city centres. Int J Biometeorol 65, 1277–1289 (2021). https://doi.org/10.1007/s00484-020-02010-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00484-020-02010-y

Keywords

Navigation