Skip to main content
Log in

In vitro release study of ketoprofen-loaded chitosan/polyaniline nanofibers

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Chitosan/polyaniline nanofibers (CH/PANI) were prepared by an in situ oxidative polymerization of aniline in the presence of CH solution. An attractive development of nanofibers network provides free volume space for the easy encapsulation of drugs in the three-dimensional network structure. The CH/PANI hybrid was characterized by using Fourier transform infrared spectroscopy, scanning electron microscopy and X-ray diffractometry. Ketoprofen (KP), a model drug that contains a carboxylic group and a hydrophobic moiety, was loaded into CH/PANI hybrid. The release of KP from the hybrid was recorded in aqueous buffer solutions of pH 2, 6.7 and 7.4 simulating the case of oral administration. The release rate was found to be changing with the pH of the medium. The kinetics of the drug delivery system have been systematically studied by different models, which are commonly used, such as zero order, first order, Hixson–Crowell, Higuchi and Korsmeyer–Peppas models. The mechanism of release of the drug was found to follow the anomalous non-Fickian diffusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1.
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Guimard NK, Gomez N, Schmidt CE (2007) Conducting polymers in biomedical engineering. Prog Polym Sci 32(8–9):876–921

    Article  CAS  Google Scholar 

  2. Svirskis D, Travas-Sejdic J, Rodgers A, Garg S (2010) Electrochemically controlled drug delivery based on intrinsically conducting polymers. J Control Release 146:6–15

    Article  CAS  PubMed  Google Scholar 

  3. Salimian R, Shahrokhian S, Panahi S (2019) Enhanced electrochemical activity of hollow carbon sphere/polyaniline-based electrochemical biosensor for HBV DNA marker detection. ACS Biomater Sci Eng 5(5):2587–2594

    Article  CAS  PubMed  Google Scholar 

  4. Low LM, Seetharaman S, He KQ, Madou MJ (2000) Microactuators toward microvalves for responsive controlled drug delivery. Sens Actuator B Chem 67(1–2):149–160

    Article  CAS  Google Scholar 

  5. Ayad MM, Salahuddin NA, Minisy IM, Amer WA (2014) Chitosan/polyaniline nanofibers coating on the quartz crystal microbalance electrode for gas sensing. Sens Actuator B Chem 202:144–153

    Article  CAS  Google Scholar 

  6. Paul RB, Shuxi L, Alan GMD, Everaldo CV, Yen W, Peter IL (2006) Polyaniline, an electroactive polymer, supports adhesion and proliferation of cardiac myoblasts. J Biomater Sci Polym Ed 17(1–2):199–212

    Google Scholar 

  7. Perez-Martinez CJ, Chávez SDM, del Castillo-Castro T, Ceniceros TEL, Castillo-Ortega MM, Rodríguez-Félix DE, Ruiz JCG (2016) Electroconductive nanocomposite hydrogel for pulsatile drug release. React Funct Polym 100:2–17

    Article  CAS  Google Scholar 

  8. Brožová L, Holler P, Kovářová J, Stejskal J, Trchová M (2008) The stability of polyaniline in strongly alkaline or acidic aqueous media. Polym Degrad Stabil 93(3):592–600

    Article  CAS  Google Scholar 

  9. Sahoo S, Sasmal A, Nanda R, Phani AR, Nayak PL (2010) Synthesis of chitosan–polycaprolactone blend for control delivery of ofloxacin drug. Carbohydr Polym 79:106–113

    Article  CAS  Google Scholar 

  10. Patil SB, Inamdar SZ, Das KK, Akamanchi KG, Patil AV, Inamadar AC, Reddy KR, Raghu AV, Kulkarni RV (2020) Tailor-made electrically-responsive poly (acrylamide)-graft-pullulan copolymer based transdermal drug delivery systems: synthesis, characterization, in-vitro and ex-vivo evaluation. J Drug Deliv Sci Technol 56:101525

    Article  CAS  Google Scholar 

  11. Sedaghat S (2014) Synthesis and characterization of new biocompatible copolymer: chitosan-graft-polyaniline. Int Nano Lett 4(2):1–6

    CAS  Google Scholar 

  12. Li M, Guo Y, Wei Y, MacDiarmid AG, Lelkes PI (2006) Electrospinning polyaniline-contained gelatin nanofibers for tissue engineering applications. Biomaterials 27(13):2705–2715

    Article  CAS  PubMed  Google Scholar 

  13. Minisy IM, Salahuddine NA, Ayad MM (2019) Chitosan/polyaniline hybrid for the removal of cationic and anionic dyes from aqueous solutions. J Appl Polym Sci 136(6):47056

    Article  CAS  Google Scholar 

  14. Shukla SK, Mishra AK, Arotiba OA, Mamba BB (2013) Chitosan-based nanomaterials: a state-of-the-art review. Int J Biol Macromol 59:46–55

    Article  CAS  PubMed  Google Scholar 

  15. Bernkop-Schnürch A, Dünnhaupt S (2012) Chitosan-based drug delivery systems. Eur J Pharm Biopharm 81(3):463–469

    Article  PubMed  CAS  Google Scholar 

  16. Hassani NA, Abdouss M, Faghihi S (2014) Synthesis and evaluation of PEG-O-chitosan nanoparticles for delivery of poor water soluble drugs: Ibuprofen. Mater Sci Eng C 41:91–99

    Article  CAS  Google Scholar 

  17. Yazdani-Pedram M, Retuert J, Quijada R (2000) Hydrogels based on modified chitosan, 1. Synthesis and swelling behavior of poly(acrylic acid) grafted chitosan. Macromol Chem Phys 201(4):923–930

    Article  CAS  Google Scholar 

  18. Krishna RK, Naidu B, Subha M, Sairam M, Aminabhavi TM (2006) Novel chitosan-based pH-sensitive interpenetrating network microgels for the controlled release of cefadroxil. Carbohydr Polym 66:333–344

    Article  CAS  Google Scholar 

  19. Chen X, Song H, Fang T, Bai J, Xiong J, Ying H (2010) Preparation, characterization, and drug-release properties of pH/temperature-responsive poly(N-isopropylacrylamide)/chitosan semi-IPN hydrogel particles. J Appl Polym Sci 116:1342–1347

    CAS  Google Scholar 

  20. Risbud MV, Hardikar AA, Bhat SV, Bhonde RR (2000) pH-sensitive freeze-dried chitosan–polyvinyl pyrrolidone hydrogels as controlled release system for antibiotic delivery. J Control Release 68:23–30

    Article  CAS  PubMed  Google Scholar 

  21. Takeuchi H, Yamamoto H, Niwa T, Hino T, Kawashima Y (1996) Enteral absorption of insulin in rats from mucoadhesive chitosan-coated liposomes. Pharm Res 13(6):896–901

    Article  CAS  PubMed  Google Scholar 

  22. Kawashima Y, Yamamoto H, Takeuchi H, Kuno Y (2000) Mucoadhesive DL-lactide/glycolide copolymer nanospheres coated with chitosan to improve oral delivery of elcatonin. Pharm Dev Technol 5(1):77–85

    Article  CAS  PubMed  Google Scholar 

  23. Gupta CR, Kishore GK, Ratna JV (2013) Development and evaluation of aceclofenac matrix tablets using polyethylene oxides as sustained release polymers. J Pharm Res 6(2):249–254

    CAS  Google Scholar 

  24. Moutsatsou P, Coopman K, Georgiadou S (2017) Biocompatibility assessment of conducting PANI/chitosan nanofibers for wound healing applications. Polymers 9(12):687

    Article  PubMed Central  CAS  Google Scholar 

  25. Kantor TG (1986) Ketoprofen: a review of its pharmacologic and clinical properties. Pharmacotherapy 6(3):93–103

    Article  CAS  PubMed  Google Scholar 

  26. Macocinschi D, Filip D, Vlad S, Oprea AM, Gafitanu CA (2012) Characterization of a poly(ether urethane)-based controlled release membrane system for delivery of ketoprofen. Appl Surf Sci 259:416–423

    Article  CAS  Google Scholar 

  27. Ayad MM, Salahuddin NA, Torad NL, El-Nasr A (2016) pH-responsive sulphonated mesoporous silica: a comparative drug release study. RSC Adv 6:57929–57940

    Article  CAS  Google Scholar 

  28. Lin H, Zhu G, Xing J, Gao B, Qiu S (2009) Polymer−mesoporous silica materials templated with an oppositely charged surfactant/polymer system for drug delivery. Langmuir 25:10159–10164

    Article  CAS  PubMed  Google Scholar 

  29. Kulkarni PV, Roney CA, Antich PP, Bonte FJ, Raghu AV, Aminabhavi TM (2010) Quinoline-n-butylcyanoacrylate-based nanoparticles for brain targeting for the diagnosis of Alzheimer's disease. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2(1):35–47

    Article  CAS  PubMed  Google Scholar 

  30. Han MG, Cho SK, Oh SG, Im SS (2002) Preparation and characterization of polyaniline nanoparticles synthesized from DBSA micellar solution. Synth Met 126:53–60

    Article  CAS  Google Scholar 

  31. Ismail YA, Shin SR, Shin KM, Yoon SG, Shon K, Kim SI, Kim SJ (2008) Electrochemical actuation in chitosan/polyaniline microfibers for artificial muscles fabricated using an in situ polymerization. Sens Actuator B Chem 129(2):834–840

    Article  CAS  Google Scholar 

  32. Osman Z, Arof AK (2003) FTIR studies of chitosan acetate based polymer electrolytes. Electrochim Acta 48:993–999

    Article  CAS  Google Scholar 

  33. Ma G, Yang D, Zhou Y, Xiao M, Kennedy JF, Nie J (2008) Preparation and characterization of water-soluble N-alkylated chitosan. Carbohydr Polym 74(1):121–126

    Article  CAS  Google Scholar 

  34. Suhas DP, Aminabhavi TM, Raghu AV (2014) para-Toluene sulfonic acid treated clay loaded sodium alginate membranes for enhanced pervaporative dehydration of isopropanol. Appl Clay Sci 101:419–429

    Article  CAS  Google Scholar 

  35. Suhas DP, Raghu AV, Jeong HM, Aminabhavi TM (2013) Graphene-loaded sodium alginate nanocomposite membranes with enhanced isopropanol dehydration performance via a pervaporation technique. RSC Adv 3(38):17120–17130

    Article  CAS  Google Scholar 

  36. Ràfols C, Rosés M, Bosch E (1997) A comparison between different approaches to estimate the aqueous pKa values of several non-steroidal anti-inflammatory drugs. Anal Chim Acta 338(1–2):127–134

    Article  Google Scholar 

  37. Kalam MA, Humayun M, Parvez N, Yadav S, Garg A, Amin S, Sultana Y, Ali A (2007) Release kinetics of modified pharmaceutical dosage forms: a review. Cont J Pharm Sci 1:30–35

    Google Scholar 

  38. Wagner JG (1967) Interpretation of percent dissolved–time plots derived from In vitro testing of conventional tablets and capsules. J Pharm Sci 58:1253–1257

    Article  Google Scholar 

  39. Higuchi T (1963) Mechanism of sustained-action medication theoretical analysis of rate of release of solid drugs dispersed in solid matrices. J Pharm Sci 52:1145–1149

    Article  CAS  PubMed  Google Scholar 

  40. Hixson AW, Crowell JH (1931) Dependence of reaction velocity upon surface and agitation. Ind Eng Chem 23(10):1160–1168

    Article  CAS  Google Scholar 

  41. Korsmeyer RW, Peppas NA (1983) Solute and penetrant diffusion in swellable polymers. J Control Release 1:89–98

    Article  Google Scholar 

Download references

Acknowledgements

This work was done in the Department of Chemistry, Faculty of Science, University of Tanta, without sources of financial funding and support.

Author information

Authors and Affiliations

Authors

Contributions

IMM contributed to methodology, data curation, writing—original draft, and writing—review and editing. NAS contributed to supervision, validation, and writing—review and editing. MMA contributed to supervision, conceptualization, validation, and writing—review and editing.

Corresponding author

Correspondence to Mohamad M. Ayad.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Minisy, I.M., Salahuddin, N.A. & Ayad, M.M. In vitro release study of ketoprofen-loaded chitosan/polyaniline nanofibers. Polym. Bull. 78, 5609–5622 (2021). https://doi.org/10.1007/s00289-020-03385-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-020-03385-z

Keywords

Navigation