Skip to main content

Advertisement

Log in

How to measure the immunosuppressive activity of MDSC: assays, problems and potential solutions

  • Symposium-in-Writing Paper
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Myeloid-derived suppressor cells (MDSC) are a heterogeneous group of mononuclear and polymorphonuclear myeloid cells, which are present at very low numbers in healthy subjects, but can expand substantially under disease conditions. Depending on disease type and stage, MDSC comprise varying amounts of immature and mature differentiation stages of myeloid cells. Validated unique phenotypic markers for MDSC are still lacking. Therefore, the functional analysis of these cells is of central importance for their identification and characterization. Various disease-promoting and immunosuppressive functions of MDSC are reported in the literature. Among those, the capacity to modulate the activity of T cells is by far the most often used and best-established read-out system. In this review, we critically evaluate the assays available for the functional analysis of human and murine MDSC under in vitro and in vivo conditions. We also discuss critical issues and controls associated with those assays. We aim at providing suggestions and recommendations useful for the contemporary biological characterization of MDSC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ATRA:

All-trans retinoic acid

Arg1, ARG1, ARG1:

Arginase-1

BrdU:

Bromodeoxyuridine

CFSE:

Carboxyfluorescein succinimidyl ester

COST:

European Cooperation in Science and Technology

DCFDA:

2′,7′-dichlorofluorescin diacetate

EU:

European Union

KO:

Knock-out

M:

Monocytic

MDSC:

Myeloid-derived suppressor cell(s)

Nos2, NOS2, NOS2:

(inducible) nitric oxide synthase 2

PMN:

Polymorphonuclear

ROS:

Reactive oxygen species

References

  1. Pradeu T, Cooper EL (2012) The danger theory: 20 years later. Front Immunol 3:287. https://doi.org/10.3389/fimmu.2012.00287

    Article  PubMed  PubMed Central  Google Scholar 

  2. Libby P (2007) Inflammatory mechanisms: the molecular basis of inflammation and disease. Nutr Rev 65:S140-6

    Article  PubMed  Google Scholar 

  3. Iqbal AJ, Fisher EA, Greaves DR (2016) Inflammation-a critical appreciation of the role of myeloid cells. Microbiol Spectr. https://doi.org/10.1128/microbiolspec.MCHD-0027-2016

    Article  PubMed  Google Scholar 

  4. Gabrilovich DI (2017) Myeloid-derived suppressor cells. Cancer Immunol Res 5:3–8. https://doi.org/10.1158/2326-6066.CIR-16-0297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bronte V, Brandau S, Chen S-H, Colombo MP, Frey AB, Greten TF, Mandruzzato S, Murray PJ, Ochoa A, Ostrand-Rosenberg S, Rodriguez PC, Sica A, Umansky V, Vonderheide RH, Gabrilovich DI (2016) Recommendations for myeloid-derived suppressor cell nomenclature and characterization standards. Nat Commun 7:12150. https://doi.org/10.1038/ncomms12150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Haile LA, Greten TF, Korangy F (2012) Immune suppression: the hallmark of myeloid derived suppressor cells. Immunol Invest 41:581–594. https://doi.org/10.3109/08820139.2012.680635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Weber J, Gibney G, Kudchadkar R, Yu B, Cheng P, Martinez AJ, Kroeger J, Richards A, McCormick L, Moberg V, Cronin H, Zhao X, Schell M, Chen YA (2016) Phase I/II Study of metastatic melanoma patients treated with nivolumab who had progressed after ipilimumab. Cancer Immunol Res 4:345–353. https://doi.org/10.1158/2326-6066.CIR-15-0193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. de Coana YP, Wolodarski M, Poschke I, Yoshimoto Y, Yang Y, Nystrom M, Edback U, Brage SE, Lundqvist A, Masucci GV, Hansson J, Kiessling R (2017) Ipilimumab treatment decreases monocytic MDSCs and increases CD8 effector memory T cells in long-term survivors with advanced melanoma. Oncotarget 8:21539–21553. https://doi.org/10.18632/oncotarget.15368

    Article  PubMed  PubMed Central  Google Scholar 

  9. Chesney JA, Mitchell RA, Yaddanapudi K (2017) Myeloid-derived suppressor cells-a new therapeutic target to overcome resistance to cancer immunotherapy. J Leukoc Biol 102:727–740. https://doi.org/10.1189/jlb.5VMR1116-458RRR

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Monu NR, Frey AB (2012) Myeloid-derived suppressor cells and anti-tumor T cells: a complex relationship. Immunol Invest 41:595–613. https://doi.org/10.3109/08820139.2012.673191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Srivastava MK, Sinha P, Clements VK, Rodriguez P, Ostrand-Rosenberg S (2010) Myeloid-derived suppressor cells inhibit T-cell activation by depleting cystine and cysteine. Cancer Res 70:68–77. https://doi.org/10.1158/0008-5472.CAN-09-2587

    Article  CAS  PubMed  Google Scholar 

  12. Raber PL, Thevenot P, Sierra R, Wyczechowska D, Halle D, Ramirez ME, Ochoa AC, Fletcher M, Velasco C, Wilk A, Reiss K, Rodriguez PC (2014) Subpopulations of myeloid-derived suppressor cells impair T cell responses through independent nitric oxide-related pathways. Int J Cancer 134:2853–2864. https://doi.org/10.1002/ijc.28622

    Article  CAS  PubMed  Google Scholar 

  13. Youn J-I, Collazo M, Shalova IN, Biswas SK, Gabrilovich DI (2012) Characterization of the nature of granulocytic myeloid-derived suppressor cells in tumor-bearing mice. J Leukoc Biol 91:167–181. https://doi.org/10.1189/jlb.0311177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Liu C, Yu S, Kappes J, Wang J, Grizzle WE, Zinn KR, Zhang H-G (2007) Expansion of spleen myeloid suppressor cells represses NK cell cytotoxicity in tumor-bearing host. Blood 109:4336–4342. https://doi.org/10.1182/blood-2006-09-046201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Knaul JK, Jörg S, Oberbeck-Mueller D, Heinemann E, Scheuermann L, Brinkmann V, Mollenkopf H-J, Yeremeev V, Kaufmann SHE, Dorhoi A (2014) Lung-residing myeloid-derived suppressors display dual functionality in murine pulmonary tuberculosis. Am J Respir Crit Care Med 190:1053–1066. https://doi.org/10.1164/rccm.201405-0828OC

    Article  CAS  PubMed  Google Scholar 

  16. Li H, Han Y, Guo Q, Zhang M, Cao X (2009) Cancer-expanded myeloid-derived suppressor cells induce anergy of NK cells through membrane-bound TGF-beta 1. J Immunol 182:240–249

    Article  CAS  PubMed  Google Scholar 

  17. Rieber N, Singh A, Öz H, Carevic M, Bouzani M, Amich J, Ost M, Ye Z, Ballbach M, Schäfer I, Mezger M, Klimosch SN, Weber ANR, Handgretinger R, Krappmann S, Liese J, Engeholm M, Schüle R, Salih HR et al (2015) Pathogenic fungi regulate immunity by inducing neutrophilic myeloid-derived suppressor cells. Cell Host Microbe 17:507–514. https://doi.org/10.1016/j.chom.2015.02.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gabrilovich DI, Nagaraj S (2009) Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol 9:162–174. https://doi.org/10.1038/nri2506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kusmartsev S, Nefedova Y, Yoder D, Gabrilovich DI (2004) Antigen-specific inhibition of CD8+ T cell response by immature myeloid cells in cancer is mediated by reactive oxygen species. J Immunol 172:989–999

    Article  CAS  PubMed  Google Scholar 

  20. Nagaraj S, Gupta K, Pisarev V, Kinarsky L, Sherman S, Kang L, Herber DL, Schneck J, Gabrilovich DI (2007) Altered recognition of antigen is a mechanism of CD8+ T cell tolerance in cancer. Nat Med 13:828–835. https://doi.org/10.1038/nm1609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Youn J-I, Nagaraj S, Collazo M, Gabrilovich DI (2008) Subsets of myeloid-derived suppressor cells in tumor-bearing mice. J Immunol 181:5791–5802

    Article  CAS  PubMed  Google Scholar 

  22. Huang B, Pan P-Y, Li Q, Sato AI, Levy DE, Bromberg J, Divino CM, Chen S-H (2006) Gr-1+ CD115+ immature myeloid suppressor cells mediate the development of tumor-induced T regulatory cells and T-cell anergy in tumor-bearing host. Cancer Res 66:1123–1131. https://doi.org/10.1158/0008-5472.CAN-05-1299

    Article  CAS  PubMed  Google Scholar 

  23. Hanson EM, Clements VK, Sinha P, Ilkovitch D, Ostrand-Rosenberg S (2009) Myeloid-derived suppressor cells down-regulate L-selectin expression on CD4+ and CD8+ T cells. J Immunol 183:937–944. https://doi.org/10.4049/jimmunol.0804253

    Article  CAS  PubMed  Google Scholar 

  24. Schmid M, Zimara N, Wege AK, Ritter U (2014) Myeloid-derived suppressor cell functionality and interaction with Leishmania major parasites differ in C57BL/6 and BALB/c mice. Eur J Immunol 44:3295–3306. https://doi.org/10.1002/eji.201344335

    Article  CAS  PubMed  Google Scholar 

  25. Su N, Yue Y, Xiong S (2016) Monocytic myeloid-derived suppressor cells from females, but not males, alleviate CVB3-induced myocarditis by increasing regulatory and CD4(+)IL-10(+) T cells. Sci Rep 6:22658. https://doi.org/10.1038/srep22658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Carretero-Iglesia L, Bouchet-Delbos L, Louvet C, Drujont L, Segovia M, Merieau E, Chiffoleau E, Josien R, Hill M, Cuturi M-C, Moreau A (2016) Comparative study of the immunoregulatory capacity of in vitro generated tolerogenic dendritic cells, suppressor macrophages, and myeloid-derived suppressor cells. Transplantation 100:2079–2089. https://doi.org/10.1097/TP.0000000000001315

    Article  CAS  PubMed  Google Scholar 

  27. Sierra RA, Thevenot P, Raber PL, Cui Y, Parsons C, Ochoa AC, Trillo-Tinoco J, Del Valle L, Rodriguez PC (2014) Rescue of notch-1 signaling in antigen-specific CD8+ T cells overcomes tumor-induced T-cell suppression and enhances immunotherapy in cancer. Cancer Immunol Res 2:800–811. https://doi.org/10.1158/2326-6066.CIR-14-0021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Corzo CA, Condamine T, Lu L, Cotter MJ, Youn J-I, Cheng P, Cho H-I, Celis E, Quiceno DG, Padhya T, McCaffrey TV, McCaffrey JC, Gabrilovich DI (2010) HIF-1α regulates function and differentiation of myeloid-derived suppressor cells in the tumor microenvironment. J Exp Med 207:2439–2453. https://doi.org/10.1084/jem.20100587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Bronte V, Wang M, Overwijk WW, Surman DR, Pericle F, Rosenberg SA, Restifo NP (1998) Apoptotic death of CD8+ T lymphocytes after immunization: induction of a suppressive population of Mac-1+/Gr-1+ cells. J Immunol 161:5313–5320

    CAS  PubMed  Google Scholar 

  30. Moses K, Klein JC, Männ L, Klingberg A, Gunzer M, Brandau S (2016) Survival of residual neutrophils and accelerated myelopoiesis limit the efficacy of antibody-mediated depletion of Ly-6G+ cells in tumor-bearing mice. J Leukoc Biol 99:811–823. https://doi.org/10.1189/jlb.1HI0715-289R

    Article  CAS  PubMed  Google Scholar 

  31. Clavijo PE, Moore EC, Chen J, Davis RJ, Friedman J, Kim Y, Van Waes C, Chen Z, Allen CT (2017) Resistance to CTLA-4 checkpoint inhibition reversed through selective elimination of granulocytic myeloid cells. Oncotarget 8:55804–55820. https://doi.org/10.18632/oncotarget.18437

    Article  PubMed  PubMed Central  Google Scholar 

  32. Vincent J, Mignot G, Chalmin F, Ladoire S, Bruchard M, Chevriaux A, Martin F, Apetoh L, Rébé C, Ghiringhelli F (2010) 5-Fluorouracil selectively kills tumor-associated myeloid-derived suppressor cells resulting in enhanced T cell-dependent antitumor immunity. Cancer Res 70:3052–3061. https://doi.org/10.1158/0008-5472.CAN-09-3690

    Article  CAS  PubMed  Google Scholar 

  33. Highfill SL, Cui Y, Giles AJ, Smith JP, Zhang H, Morse E, Kaplan RN, Mackall CL (2014) Disruption of CXCR2-mediated MDSC tumor trafficking enhances anti-PD1 efficacy. Sci Transl Med 6:237ra67. https://doi.org/10.1126/scitranslmed.3007974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Nefedova Y, Fishman M, Sherman S, Wang X, Beg AA, Gabrilovich DI (2007) Mechanism of all-trans retinoic acid effect on tumor-associated myeloid-derived suppressor cells. Cancer Res 67:11021–11028. https://doi.org/10.1158/0008-5472.CAN-07-2593

    Article  CAS  PubMed  Google Scholar 

  35. Serafini P, Meckel K, Kelso M, Noonan K, Califano J, Koch W, Dolcetti L, Bronte V, Borrello I (2006) Phosphodiesterase-5 inhibition augments endogenous antitumor immunity by reducing myeloid-derived suppressor cell function. J Exp Med 203:2691–2702. https://doi.org/10.1084/jem.20061104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. De Santo C, Serafini P, Marigo I, Dolcetti L, Bolla M, Del Soldato P, Melani C, Guiducci C, Colombo MP, Iezzi M, Musiani P, Zanovello P, Bronte V (2005) Nitroaspirin corrects immune dysfunction in tumor-bearing hosts and promotes tumor eradication by cancer vaccination. Proc Natl Acad Sci USA 102:4185–4190. https://doi.org/10.1073/pnas.0409783102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Nagaraj S, Youn J-I, Weber H, Iclozan C, Lu L, Cotter MJ, Meyer C, Becerra CR, Fishman M, Antonia S, Sporn MB, Liby KT, Rawal B, Lee J-H, Gabrilovich DI (2010) Anti-inflammatory triterpenoid blocks immune suppressive function of MDSCs and improves immune response in cancer. Clin Cancer Res 16:1812–1823. https://doi.org/10.1158/1078-0432.CCR-09-3272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Yu J, Du W, Yan F, Wang Y, Li H, Cao S, Yu W, Shen C, Liu J, Ren X (2013) Myeloid-derived suppressor cells suppress antitumor immune responses through IDO expression and correlate with lymph node metastasis in patients with breast cancer. J Immunol 190:3783–3797. https://doi.org/10.4049/jimmunol.1201449

    Article  CAS  PubMed  Google Scholar 

  39. Hoechst B, Ormandy LA, Ballmaier M, Lehner F, Krüger C, Manns MP, Greten TF, Korangy F (2008) A new population of myeloid-derived suppressor cells in hepatocellular carcinoma patients induces CD4(+)CD25(+)Foxp3(+) T cells. Gastroenterology 135:234–243. https://doi.org/10.1053/j.gastro.2008.03.020

    Article  CAS  PubMed  Google Scholar 

  40. Brandau S, Trellakis S, Bruderek K, Schmaltz D, Steller G, Elian M, Suttmann H, Schenck M, Welling J, Zabel P, Lang S (2011) Myeloid-derived suppressor cells in the peripheral blood of cancer patients contain a subset of immature neutrophils with impaired migratory properties. J Leukoc Biol 89:311–317. https://doi.org/10.1189/jlb.0310162

    Article  CAS  PubMed  Google Scholar 

  41. Obermajer N, Muthuswamy R, Lesnock J, Edwards RP, Kalinski P (2011) Positive feedback between PGE2 and COX2 redirects the differentiation of human dendritic cells toward stable myeloid-derived suppressor cells. Blood 118:5498–5505. https://doi.org/10.1182/blood-2011-07-365825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Pinton L, Solito S, Damuzzo V, Francescato S, Pozzuoli A, Berizzi A, Mocellin S, Rossi CR, Bronte V, Mandruzzato S (2016) Activated T cells sustain myeloid-derived suppressor cell-mediated immune suppression. Oncotarget 7:1168–1184. https://doi.org/10.18632/oncotarget.6662

    Article  PubMed  Google Scholar 

  43. Jordan KR, Kapoor P, Spongberg E, Tobin RP, Gao D, Borges VF, McCarter MD (2017) Immunosuppressive myeloid-derived suppressor cells are increased in splenocytes from cancer patients. Cancer Immunol Immunother 66:503–513. https://doi.org/10.1007/s00262-016-1953-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lechner MG, Liebertz DJ, Epstein AL (2010) Characterization of cytokine-induced myeloid-derived suppressor cells from normal human peripheral blood mononuclear cells. J Immunol 185:2273–2284. https://doi.org/10.4049/jimmunol.1000901

    Article  CAS  PubMed  Google Scholar 

  45. Mandruzzato S, Brandau S, Britten CM, Bronte V, Damuzzo V, Gouttefangeas C, Maurer D, Ottensmeier C, van der Burg SH, Welters MJP, Walter S (2016) Toward harmonized phenotyping of human myeloid-derived suppressor cells by flow cytometry: results from an interim study. Cancer Immunol Immunother 65:161–169. https://doi.org/10.1007/s00262-015-1782-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Dumitru CA, Moses K, Trellakis S, Lang S, Brandau S (2012) Neutrophils and granulocytic myeloid-derived suppressor cells: immunophenotyping, cell biology and clinical relevance in human oncology. Cancer Immunol Immunother 61:1155–1167. https://doi.org/10.1007/s00262-012-1294-5

    Article  CAS  PubMed  Google Scholar 

  47. Kusmartsev S, Nagaraj S, Gabrilovich DI (2005) Tumor-associated CD8+ T cell tolerance induced by bone marrow-derived immature myeloid cells. J Immunol 175:4583–4592

    Article  CAS  PubMed  Google Scholar 

  48. Heuvers ME, Muskens F, Bezemer K, Lambers M, Dingemans A-MC, Groen HJM, Smit EF, Hoogsteden HC, Hegmans JPJJ., Aerts JGJV. (2013) Arginase-1 mRNA expression correlates with myeloid-derived suppressor cell levels in peripheral blood of NSCLC patients. Lung Cancer 81:468–474. https://doi.org/10.1016/j.lungcan.2013.06.005

    Article  PubMed  Google Scholar 

  49. Rodriguez PC, Hernandez CP, Quiceno D, Dubinett SM, Zabaleta J, Ochoa JB, Gilbert J, Ochoa AC (2005) Arginase I in myeloid suppressor cells is induced by COX-2 in lung carcinoma. J Exp Med 202:931–939. https://doi.org/10.1084/jem.20050715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Rodriguez PC, Ernstoff MS, Hernandez C, Atkins M, Zabaleta J, Sierra R, Ochoa AC (2009) Arginase I-producing myeloid-derived suppressor cells in renal cell carcinoma are a subpopulation of activated granulocytes. Cancer Res 69:1553–1560. https://doi.org/10.1158/0008-5472.CAN-08-1921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Liu C-Y, Wang Y-M, Wang C-L, Feng P-H, Ko H-W, Liu Y-H, Wu Y-C, Chu Y, Chung F-T, Kuo C-H, Lee K-Y, Lin S-M, Lin H-C, Wang C-H, Yu C-T, Kuo H-P (2010) Population alterations of l-arginase- and inducible nitric oxide synthase-expressed CD11b+/CD14−/CD15+/CD33+ myeloid-derived suppressor cells and CD8+ T lymphocytes in patients with advanced-stage non-small cell lung cancer. J Cancer Res Clin Oncol 136:35–45. https://doi.org/10.1007/s00432-009-0634-0

    Article  CAS  PubMed  Google Scholar 

  52. Toor SM, Syed Khaja AS, El Salhat H, Bekdache O, Kanbar J, Jaloudi M, Elkord E (2016) Increased levels of circulating and tumor-infiltrating granulocytic myeloid cells in colorectal cancer patients. Front Immunol 7:560. https://doi.org/10.3389/fimmu.2016.00560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Munn DH, Shafizadeh E, Attwood JT, Bondarev I, Pashine A, Mellor AL (1999) Inhibition of T cell proliferation by macrophage tryptophan catabolism. J Exp Med 189:1363–1372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Toor SM, Syed Khaja AS, El Salhat H, Faour I, Kanbar J, Quadri AA, Albashir M, Elkord E (2017) Myeloid cells in circulation and tumor microenvironment of breast cancer patients. Cancer Immunol Immunother 66:753–764. https://doi.org/10.1007/s00262-017-1977-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Cao LY, Chung J-S, Teshima T, Feigenbaum L, Cruz PD, Jacobe HT, Chong BF, Ariizumi K (2016) Myeloid-derived suppressor cells in psoriasis are an expanded population exhibiting diverse T-cell-suppressor mechanisms. J Invest Dermatol 136:1801–1810. https://doi.org/10.1016/j.jid.2016.02.816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Wesolowski R, Markowitz J, Carson WE (2013) Myeloid derived suppressor cells—a new therapeutic target in the treatment of cancer. J Immunother Cancer 1:10. https://doi.org/10.1186/2051-1426-1-10

    Article  PubMed  PubMed Central  Google Scholar 

  57. Luyckx A, Schouppe E, Rutgeerts O, Lenaerts C, Fevery S, Devos T, Dierickx D, Waer M, Van Ginderachter JA, Billiau AD (2012) G-CSF stem cell mobilization in human donors induces polymorphonuclear and mononuclear myeloid-derived suppressor cells. Clin Immunol 143:83–87. https://doi.org/10.1016/j.clim.2012.01.011

    Article  CAS  PubMed  Google Scholar 

  58. Walsh NC, Kenney LL, Jangalwe S, Aryee K-E, Greiner DL, Brehm MA, Shultz LD (2017) Humanized mouse models of clinical disease. Annu Rev Pathol 12:187–215. https://doi.org/10.1146/annurev-pathol-052016-100332

    Article  CAS  PubMed  Google Scholar 

  59. Wu H, Zhen Y, Ma Z, Li H, Yu J, Xu Z-G, Wang X-Y, Yi H, Yang Y-G (2016) Arginase-1-dependent promotion of TH17 differentiation and disease progression by MDSCs in systemic lupus erythematosus. Sci Transl Med 8:331ra40. https://doi.org/10.1126/scitranslmed.aae0482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Liu G, Hu Y, Xiao J, Li X, Li Y, Tan H, Zhao Y, Cheng D, Shi H (2016) 99mTc-labelled anti-CD11b SPECT/CT imaging allows detection of plaque destabilization tightly linked to inflammation. Sci Rep 6:20900. https://doi.org/10.1038/srep20900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Eisenblaetter M, Flores-Borja F, Lee JJ, Wefers C, Smith H, Hueting R, Cooper MS, Blower PJ, Patel D, Rodriguez-Justo M, Milewicz H, Vogl T, Roth J, Tutt A, Schaeffter T, Ng T (2017) Visualization of tumor-immune interaction—target-specific imaging of S100A8/A9 reveals pre-metastatic niche establishment. Theranostics 7:2392–2401. https://doi.org/10.7150/thno.17138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Moses K, Brandau S (2016) Human neutrophils: their role in cancer and relation to myeloid-derived suppressor cells. Semin Immunol 28:187–196. https://doi.org/10.1016/j.smim.2016.03.018

    Article  CAS  PubMed  Google Scholar 

  63. Condamine T, Dominguez GA, Youn J-I, Kossenkov AV, Mony S, Alicea-Torres K, Tcyganov E, Hashimoto A, Nefedova Y, Lin C, Partlova S, Garfall A, Vogl DT, Xu X, Knight SC, Malietzis G, Lee GH, Eruslanov E, Albelda SM et al (2016) Lectin-type oxidized LDL receptor-1 distinguishes population of human polymorphonuclear myeloid-derived suppressor cells in cancer patients. Sci Immunol 1:aaf8943. https://doi.org/10.1126/sciimmunol.aaf8943

    Article  PubMed  PubMed Central  Google Scholar 

  64. Trellakis S, Bruderek K, Hütte J, Elian M, Hoffmann TK, Lang S, Brandau S (2013) Granulocytic myeloid-derived suppressor cells are cryosensitive and their frequency does not correlate with serum concentrations of colony-stimulating factors in head and neck cancer. Innate Immun 19:328–336. https://doi.org/10.1177/1753425912463618

    Article  CAS  PubMed  Google Scholar 

  65. Gregori S, Tomasoni D, Pacciani V, Scirpoli M, Battaglia M, Magnani CF, Hauben E, Roncarolo M-G (2010) Differentiation of type 1 T regulatory cells (Tr1) by tolerogenic DC-10 requires the IL-10-dependent ILT4/HLA-G pathway. Blood 116:935–944. https://doi.org/10.1182/blood-2009-07-234872

    Article  CAS  PubMed  Google Scholar 

  66. Stiff A, Trikha P, Mundy-Bosse BL, McMichael EL, Mace TA, Benner B, Kendra K, Campbell A, Gautam S, Abood D, Landi I, Hsu V, Duggan MC, Wesolowski R, Old M, Howard JH, Yu L, Stasik N, Olencki T et al (2018) Nitric oxide production by myeloid derived suppressor cells plays a role in impairing Fc receptor-mediated natural killer cell function. Clin Cancer Res. https://doi.org/10.1158/1078-0432.CCR-17-0691

    Article  PubMed  PubMed Central  Google Scholar 

  67. Mao Y, Sarhan D, Steven A, Seliger B, Kiessling R, Lundqvist A (2014) Inhibition of tumor-derived prostaglandin-e2 blocks the induction of myeloid-derived suppressor cells and recovers natural killer cell activity. Clin Cancer Res 20:4096–4106. https://doi.org/10.1158/1078-0432.CCR-14-0635

    Article  CAS  PubMed  Google Scholar 

  68. Goh CC, Roggerson KM, Lee H-C, Golden-Mason L, Rosen HR, Hahn YS (2016) Hepatitis C virus-induced myeloid-derived suppressor cells suppress NK Cell IFN-γ production by altering cellular metabolism via arginase-1. J Immunol 196:2283–2292. https://doi.org/10.4049/jimmunol.1501881

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank all members of Mye-EUNITER for contributions and discussions during the preparation of this manuscript. We also thank all members of the Esendagli laboratory at Hacettepe University Cancer Institute for their help with the quantitative and qualitative analysis of the literature.

Funding

This work was supported by COST (European Cooperation in Science and Technology) and the COST Action BM1404 Mye-EUNITER (http://www.mye-euniter.eu). COST is part of the EU Framework Programme Horizon 2020.

Author information

Authors and Affiliations

Authors

Contributions

AMB and SB conceptualized the review. All authors contributed to the writing and editing of the review. All authors approved the final version.

Corresponding author

Correspondence to Sven Brandau.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Jo A. Van Ginderachter and Sven Brandau co-senior authors.

This paper is part of a Symposium-in-Writing in Cancer Immunology, Immunotherapy by members of the European Network of Investigators Triggering Exploratory Research on Myeloid Regulatory Cells (Mye-EUNITER network), funded by the COST programme of the European Union (http://www.mye-euniter.eu).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bruger, A.M., Dorhoi, A., Esendagli, G. et al. How to measure the immunosuppressive activity of MDSC: assays, problems and potential solutions. Cancer Immunol Immunother 68, 631–644 (2019). https://doi.org/10.1007/s00262-018-2170-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-018-2170-8

Keywords

Navigation