Skip to main content
Log in

Comparison Among Test Substrates in Metal Uptake and Toxicity to Folsomia candida and Hordeum vulgare

  • Focused Review
  • Published:
Bulletin of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

The main aim of this short review was to assess the effect of test medium on the bioavailability of metals to the soil invertebrate Folsomia candida and the barley plant Hordeum vulgare. Solution-only exposures and sand-solution media were suitable media with control survival of > 80%. Comparing toxicity and accumulation data, LC50 and/or EC50 values as well as internal concentrations of cadmium (Cd) and copper (Cu) were similar in the tests with different porewater composition for springtails and barley plants. Similar results for toxicity and bioaccumulation of Cd and Cu using different test substrates, suggest the importance of physiological handling of the effects by the organisms rather than the influence of test medium composition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ait Ali N, Ater M, Sunahara GI, Robidoux PY (2004) Phytotoxicity and bioaccumulation of copper and chromium using barley (Hordeum vulgare L.) in spiked artificial and natural forest soils. Ecotoxicol Environ Saf 57:363–374

    Google Scholar 

  • Antunes PMC, Kreager NJ (2009) Development of the terrestrial biotic ligand model for predicting nickel toxicity to barley (Hordeum vulgare): ion effects at low pH. Environ Toxicol Chem 28:1704–1710

    CAS  Google Scholar 

  • Antunes PMC, Berkelaar EJ, Boyle D, Hale BA, Hendershot W, Voigt A (2006) The biotic ligand model for plants and metals: technical challenges for field application. Environ Toxicol Chem 25:875–882

    CAS  Google Scholar 

  • Antunes PMC, Hale BA, Ryan AC (2007) Toxicity versus accumulation for barley plant exposed to copper in the presence of metal buffers: progress towards development of a terrestrial biotic ligand model. Environ Toxicol Chem 26:2282–2289

    CAS  Google Scholar 

  • Ardestani MM, van Gestel CAM (2013a) Dynamic bioavailability of copper in soil estimated by uptake and elimination kinetics in the springtail Folsomia candida. Ecotoxicology 22:308–318

    CAS  Google Scholar 

  • Ardestani MM, van Gestel CAM (2013b) Using a toxicokinetics approach to explain the effect of soil pH on cadmium bioavailability to Folsomia candida. Environ Pollut 180:122–130

    CAS  Google Scholar 

  • Ardestani MM, van Gestel CAM (2013c) Toxicodynamics of copper and cadmium in Folsomia candida exposed to simulated soil solutions. Environ Toxicol Chem 32:2746–2754

    CAS  Google Scholar 

  • Ardestani MM, van Gestel CAM (2014) The effect of pH and calcium on copper availability to the springtail Folsomia candida in simplified soil solutions. Pedobiologia 57:53–55

    Google Scholar 

  • Ardestani MM, van Gestel CAM (2019) The effect of major cations on the toxicity of cadmium to Folsomia candida in a sand-solution medium analyzed by biotic ligand modeling. Environ Pollut 246:19–25

    CAS  Google Scholar 

  • Ardestani MM, Diez Ortiz M, van Gestel CAM (2013a) The influence of Ca and pH on the uptake and effects of Cd in Folsomia candida exposed to simplified soil solutions. Environ Toxicol Chem 32:1759–1767

    CAS  Google Scholar 

  • Ardestani MM, Verweij RA, van Gestel CAM (2013b) The influence of calcium and pH on the uptake and toxicity of copper in Folsomia candida exposed to simplified soil solutions. J Hazard Mater 261:405–413

    CAS  Google Scholar 

  • Ardestani MM, Oduber F, van Gestel CAM (2014) A combined toxicokinetics and toxicodynamics approach to assess the effect of porewater composition on cadmium bioavailability to Folsomia candida. Environ Toxicol Chem 33:1570–1577

    CAS  Google Scholar 

  • Ashauer R, Agatz A, Albert C, Ducrot V, Galic N, Hendriks J, Jager T, Kretschmann A, O’ Connor I, Rubach MN, Nyman AM, Schmitt W, Stadnicka J, van den Brink PJ, Preuss TG (2011) Toxicokinetic-toxicodynamic modeling of quantal and graded sublethal endpoints: a brief discussion of concepts. Environ Toxicol Chem 30:2519–2524

    CAS  Google Scholar 

  • Bell PF, Chaney RL, Angle JS (1991) Free metal activity and total metal concentrations as indices of micronutrient availability to barley (Hordeum vulgare L.). Plant Soil 130:51–62

    CAS  Google Scholar 

  • Bielská L, Hovorková I, Komprdová K, Hofman J (2012) Variability of standard artificial soils: physic-chemical properties and phenanthrene desorption measured by means of supercritical fluid extraction. Environ Pollut 163:1–7

    Google Scholar 

  • Bruus Pedersen M, van Gestel CAM (2001) Toxicity of copper to the collembolan Folsomia fimetaria in relation to the age of soil contamination. Ecotoxicol Environ Saf 49:54–59

    CAS  Google Scholar 

  • Bruus Pedersen M, van Gestel CAM, Elmegaard N (2000) Effects of copper on reproduction of two collembolan species exposed through soil, food, and water. Environ Toxicol Chem 19:2579–2588

    Google Scholar 

  • Bur T, Probst A, Bianco A, Gandois A, Crouau Y (2010) Determining cadmium critical concentrations in natural soils by assessing Collembola mortality, reproduction and growth. Ecotoxicol Environ Saf 73:415–422

    CAS  Google Scholar 

  • Campbell PGC (1995) Interactions between trace metals and aquatic organisms: a critique of the free-ion activity model. In: Tessier A, Turner DR (eds) Metal speciation and bioavailability in aquatic systems. Wiley, Hoboken, pp 45–102

    Google Scholar 

  • Cheng T, Allen HE (2001) Prediction of uptake of copper from solution by lettuce (Lactuca sativa). Environ Toxicol Chem 11:2544–2551

    Google Scholar 

  • Crommentuijn T, Doornekamp A, van Gestel CAM (1997) Bioavailability and ecological effects of cadmium on Folsomia candida (Willem) in an artificial soil substrate as influenced by pH and organic matter. Appl Soil Ecol 5:261–271

    Google Scholar 

  • Demirevska-Kepova K, Simova-Stoilova L, Stoyanova Z, Hölzer R, Feller U (2004) Biochemical changes in barley plants after excessive supply of copper and manganese. Chemosphere 52:253–266

    CAS  Google Scholar 

  • Di Toro DM, Allen HE, Bergman HL, Meyer JS, Paquin PR, Santore RC (2001) Biotic ligand model of the acute toxicity of metals. 1. Technical basis. Environ Toxicol Chem 20:2383–2396

    Google Scholar 

  • Fountain MT, Hopkin SP (2005) Folsomia candida (Collembola): a “standard” soil arthropod. Ann Rev Entomol 50:201–222

    CAS  Google Scholar 

  • Guo TR, Zhang GP, Zhang YH (2007) Physiological changes in barley plants under combined toxicity of aluminium, copper and cadmium. Colloid Surf B 57:182–188

    CAS  Google Scholar 

  • Houx NWH, Dekker A, van Kammen-Polman AMM, Ronday R (1996) Acute toxicity test for terrestrial hazard assessment with exposure of Folsomia candida to pesticides in an aqueous medium. Arch Environ Contam Toxicol 30:9–14

    CAS  Google Scholar 

  • ISO (1999) Soil quality – inhibition of reproduction of Collembola (Folsomia candida) by soil pollutants, ISO 11267. International Organization for Standardization, Geneva

    Google Scholar 

  • Jager T, Albert C, Preuss T, Ashauer R (2011) General unified threshold model for survival: a toxicokinetic-toxicodynamic framework for ecotoxicology. Environ Sci Technol 45:2529–2540

    CAS  Google Scholar 

  • Kinraide TB (1999) Interactions among Ca2+, Na+ and K+ in salinity toxicity: quantitative resolution of multiple toxic and ameliorative effects. J Exp Bot 50:1495–1505

    CAS  Google Scholar 

  • Kopittke PM, Blamey FPC, Kinraide TB, Wang P, Reichman SM, Menzies NW (2011) Separating multiple, short-term, deleterious effects of saline solutions on the growth of cowpea seedlings. New Phytol 189:1110–1121

    CAS  Google Scholar 

  • Lanno R, Wells J, Condor J, Bradham K, Basta N (2004) The bioavailability of chemicals in soil for earthworms. Ecotoxicol Environ Saf 57:39–47

    CAS  Google Scholar 

  • Li B, Zhang X, Wang XD, Ma YB (2009) Refining a biotic ligand model for nickel toxicity to barley root elongation in solution culture. Ecotoxicol Environ Saf 72:1760–1766

    CAS  Google Scholar 

  • Lin Y, Di Toro DM, Allen HE (2015) Development and validity of a terrestrial biotic ligand model for Ni toxicity to barley root elongation for non-calcareous soils. Environ Pollut 202:41–49

    CAS  Google Scholar 

  • Lock K, Criel P, De Schamphelaere KAC, van Eeckhout H, Janssen CR (2007a) Influence of calcium, magnesium, sodium, potassium and pH on copper toxicity to barley (Hordeum vulgare). Ecotoxicol Environ Saf 68:299–304

    CAS  Google Scholar 

  • Lock K, De Schamphelaere KAC, Becaus S, Criel P, van Eeckhout H, Janssen CR (2007b) Development and validation of a terrestrial biotic ligand model predicting the effect of cobalt on root growth of barley (Hordeum vulgare). Environ Pollut 147:626–633

    CAS  Google Scholar 

  • Lock K, van Eeckhout H, De Schamphelaere KAC, Criel P, Janssen CR (2007c) Development of a biotic ligand model (BLM) predicting nickel toxicity to barley (Hordeum vulgare). Chemosphere 66:1346–1352

    CAS  Google Scholar 

  • Lwalaba JLW, Louis LT, Zvobgo G, Fu L, Mwamba TM, Mundende RPM, Zhang G (2019) Copper alleviates cobalt toxicity in barley by antagonistic interaction of the two metals. Ecotoxicol Environ Saf 180:234–241

    CAS  Google Scholar 

  • Lwalaba JLW, Louis LT, Zvobgo G, Richmond MEA, Fu L, Naz S, Mwamba TM, Mundende RPM, Zhang G (2020) Physiological and molecular mechanisms of cobalt and copper interaction in causing phyto-toxicity to two barley genotypes differing in Co tolerance. Ecotoxicol Environ Saf 187:109866

    CAS  Google Scholar 

  • McLaughlin MJ, Smolders E, Merckx R, Maes A (1997) Plant uptake of Cd and Zn in chelator-buffered nutrient solution depends on ligand type. In: Ando T, Fujita K, Mae T, Matsumoto H, Mori S, Sekiya J (eds) Plant nutrition for sustainable food production and environment. Kluwer Academic, Dordrecht, pp 113–118

    Google Scholar 

  • Niyogi S, Wood CM (2003) Effects of chronic waterborne and dietary metal exposures on gill metal-binding: implications for the biotic ligand model. Hum Ecol Risk Assess 9:813–846

    CAS  Google Scholar 

  • Peijnenburg WJGM, Baerselman R, de Groot AC, Jager T, Posthuma L, van Veen RPM (1999) Relating environmental availability to bioavailability: soil type-dependent metal accumulation in the oligochaeta Eiseni andrei. Ecotoxicol Environ Saf 44:294–310

    CAS  Google Scholar 

  • Phipps T, Tank SL, Wirtz J, Brewer L, Coyner A, Ortego LS, Fairbrother A (2002) Essentiality of nickel and homeostatic mechanisms for its regulation in terrestrial organisms. Environ Rev 10:209–261

    CAS  Google Scholar 

  • Rainbow PS (2002) Trace metal concentrations in aquatic invertebrates: why and so what? Environ Pollut 120:497–507

    CAS  Google Scholar 

  • Santore RC, Di Toro DM, Paquin PR, Allen HE, Meyer JS (2001) Biotic ligand model of the acute toxicity of metals. 2. Application to acute copper toxicity in freshwater fish and Daphnia. Environ Toxicol Chem 20:2397–2402

    CAS  Google Scholar 

  • Smolders E, Oorts K, van Sprang P, Schoeters I, Janssen CR, McGrath SP, McLaughlin MJ (2009) Toxicity of trace metals in soil as affected by soil type and aging after contamination: using calibrated bioavailability models to set ecological soil standards. Environ Toxicol Chem 28:1633–1642

    CAS  Google Scholar 

  • Steenbergen NTTM, Iaccino F, de Winkel M, Reijnders L, Peijnenburg WJGM (2005) Development of a biotic ligand model and a regression model predicting acute copper toxicity to the earthworm Aporrectodea caliginosa. Envion Sci Technol 39:5694–5702

    CAS  Google Scholar 

  • Thakali S, Allen HE, Di Toro DM, Ponizovsky AA, Rooney CP, Zhao FJ, McGrath SP (2006a) A terrestrial biotic ligand model. 1. Development and application to Cu and Ni toxicity to barley root elongation in soils. Environ Sci Technol 40:7085–7093

    CAS  Google Scholar 

  • Thakali S, Allen HE, Di Toro DM, Ponizovsky AA, Rooney CP, Zhao FJ, McGrath SP, Criel P, van Eeckhout H, Janssen CR, Oorts K, Smolders E (2006b) Terrestrial biotic ligand model. 2. Application to Cu and Ni toxicities to plants, invertebrates, and microbes in soils. Environ Sci Technol 40:7094–7100

    CAS  Google Scholar 

  • Tiryakioglu M, Eker S, Ozkutlu F, Husted S, Cakmak I (2006) Antioxidant defense system and cadmium uptake in barley genotypes differing in cadmium tolerance. J Trace Elem Med Biol 20:181–189

    CAS  Google Scholar 

  • Van Gestel CAM (1997) Scientific basis for extrapolating results from soil ecotoxicity tests to field conditions and the use of bioassays. In: Straalen NM, Løkke H (eds) Ecological risk assessment of contaminants in soil. Chapman & Hall, London, pp 25–50

    Google Scholar 

  • Van Gestel CAM (2012) Soil ecotoxicology: state of the art and future directions. ZooKeys 176:275–296

    Google Scholar 

  • Van Gestel CAM, Koolhaas JE (2004) Water-extractability, free ion activity, and pH explain cadmium sorption and toxicity to Folsomia candida (Collembola) in seven soil-pH combinations. Environ Toxicol Chem 23:1822–1833

    Google Scholar 

  • Versieren L, Smets E, De Schamphelaere K, Blust R, Smolders E (2014) Mixture toxicity of copper and zinc to barley at low level effects can be described by the Biotic Ligand Model. Plant Soil 381:131–142

    CAS  Google Scholar 

  • Vijver MG, Jager T, Posthuma L, Peijnenburg WJGM (2001) Impact of metal pools and soil properties on metal accumulation in Folsomia candida (Collembola). Environ Toxicol Chem 20:712–720

    CAS  Google Scholar 

  • Wang XD, Ma YB, Hua L, Zhang X (2009) Identification of hydroxyl copper toxicity to barley (Hordeum vulgare) root elongation in solution culture. Environ Toxicol Chem 28:662–667

    CAS  Google Scholar 

  • Wang XD, Li B, Ma YB, Hua L (2010) Development of a biotic ligand model for acute zinc toxicity to barley root elongation. Ecotoxicol Environ Saf 73:1272–1278

    CAS  Google Scholar 

  • Wang X, Hua L, Ma Y (2012) A biotic ligand model predicting acute copper toxicity for barley (Hordeum vulgare): influence of calcium, magnesium, sodium, potassium and pH. Chemosphere 89:89–95

    CAS  Google Scholar 

  • Wang XD, Wu MY, Ma JX, Chen X, Hua L (2016) Modeling of acute cadmium toxicity in solution to barley root elongation using biotic ligand model theory. J Environ Sci 42:112–118

    CAS  Google Scholar 

  • Wu F, Zhang G, Dominy P, Wu H, Bachir DML (2007) Differences in yield components and kernel cadmium accumulation in response to Cd toxicity in four barley genotypes. Chemosphere 70:83–92

    CAS  Google Scholar 

  • Ying M, Yasuda H, Kobayashi S, Sakurai N, Kidou SI (2019) Barley cold-induced CISP proteins contribute to the accumulation of heavy metals in roots. Environ Exp Bot 165:53–58

    CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the grants awarded by the Ministry of Education of the Czech Republic-MEYS (Grant Nos. LM2015075 and EF16_013/0001782). This work has also been supported by Charles University Research Centre program No. 204069. The author thanks the reviewers for their constructive comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masoud M. Ardestani.

Ethics declarations

Conflict of interest

There is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 155 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ardestani, M.M. Comparison Among Test Substrates in Metal Uptake and Toxicity to Folsomia candida and Hordeum vulgare. Bull Environ Contam Toxicol 104, 400–410 (2020). https://doi.org/10.1007/s00128-020-02807-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00128-020-02807-y

Keywords

Navigation