Skip to main content

Advertisement

Log in

Climate change accelerates recovery of the Tatra Mountain lakes from acidification and increases their nutrient and chlorophyll a concentrations

  • Research Article
  • Published:
Aquatic Sciences Aims and scope Submit manuscript

Abstract

We evaluated changes in the concentration of cations, anions, nutrients (dissolved organic carbon, DOC; phosphorus, P; and nitrogen forms including nitrate, NO3 and total organic nitrogen, TON), and chlorophyll a (Chl-a) in 31 Tatra Mountain lakes in Slovakia and Poland during their recovery from acidic deposition (1992–2018). Typical effects of decreasing acidic deposition on the lakes’ water composition, such as decreasing base cation concentrations, were confounded by climate change and catchment characteristics, including areal proportions of well-developed soils and scree. A climate-related increase in physical erosion provided freshly exposed unweathered granodiorite (the dominant bedrock) to chemical weathering. Dissolution of accessory calcite in the granodiorite increased the in-lake Ca2+ and HCO3 concentrations and reversed the Ca2+ trends, which originally decreased in parallel with strong acid anions. These changes were most pronounced in steep, scree-rich areas, which are most sensitive to physical weathering. Fresh apatite [Ca5(PO4)3(F, Cl, OH)] in the crushed granodiorite acts as a P source at soil pH’s between 4 and 5 and in the presence of chelating organic acids within soils. These conditions enhance apatite solubility, which in part explains increasing P in lakes with scree-dominated catchments. Soil recovery from acidification due to decreasing acidic deposition and the neutralizing effect of weathering of erosion-derived accessory calcite were the most likely causes of elevated DOC and P export from soils. Their elevated leaching was accompanied by increasing in-lake concentrations of Chl-a and TON. The increasing TON concentrations were, as for Ca2+, most pronounced in the scree-rich catchments, and represented the most sensitive indicator of the changes in the lake water nutrient composition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Baron JS, Rueth HM, Wolfe AM, Nydick KR, Allstott EJ, Minear JT, Moraska B (2000) Ecosystem responses to nitrogen deposition in the Colorado Front Range. Ecosystems 3:352–368

    CAS  Google Scholar 

  • Blum JD, Klaue A, Nezat CA, Driscoll CT, Johnson CE, Siccama TG, Eagar C, Fahey TJ, Likens GE (2002) Mycorrhizal weathering of apatite as an important calcium source in base-poor forest ecosystems. Nature 417:729–731

    CAS  PubMed  Google Scholar 

  • Boyle JF, Chiverrell RC, Norton SA, Plater AJ (2013) A leaky model of long-term soil phosphorus dynamics. Glob Biogeochem Cycle 27:516–525

    CAS  Google Scholar 

  • Brahney J, Ballantyne AP, Sievers C, Neff JC (2013) Increasing Ca2+ deposition in the western US: the role of mineral aerosols. Aeolian Res 10:77–87

    Google Scholar 

  • Brahney J, Ballantyne AP, Kociolek P, Spaulding S, Out M, Porwoll T, Neff JC (2014) Dust mediated transfer of phosphorus to alpine lake ecosystems of the Wind River Range, Wyoming, USA. Biogeochemistry 120:259–278

    CAS  Google Scholar 

  • Brahney J, Mahowald N, Ward DS, Ballantyne AP, Neff JC (2015) Is atmospheric phosphorus pollution altering global alpine lake stoichiometry? Glob Biogeochem Cycle 29(9):1369–1383

    CAS  Google Scholar 

  • Camarero L, Catalan J (2012) Atmospheric phosphorus deposition may cause lakes to revert from phosphorus limitation back to nitrogen limitation. Nat Commun 3:118

    Google Scholar 

  • Camarero L, Rogora M, Mosello R, Anderson NJ, Barbieri A, Botev I, Kernan M, Kopáček J, Korhola A, Lotter AF, Muri G, Postolache C, Stuchlík E, Thies H, Wright RF (2009) Regionalisation of chemical variability in European mountain lakes. Freshw Biol 54:2452–2469

    CAS  Google Scholar 

  • Catalan J, Pla-Rabés S, García J, Camarero L (2014) Air temperature-driven CO2 consumption by rock weathering at short timescales: evidence from a Holocene lake sediment record. Geochim Cosmochim Acta 136:67–79

    CAS  Google Scholar 

  • Chadwick OA, Derry LA, Vitousek PM, Huebert BJ, Hedin LO (1999) Changing sources of nutrients during four million years of ecosystem development. Nature 397:491–497

    CAS  Google Scholar 

  • Cook RB, Kelly CA, Schindler DW, Turner MA (1986) Mechanisms of hydrogen ion neutralization in an experimentally acidified lake. Limnol Oceanogr 31:134–148

    CAS  Google Scholar 

  • Detenbeck NE, Brezonik PL (1991) Phosphorus sorption by sediments from a soft-water seepage lake. 2. Effects of pH and sediment composition. Environ Sci Technol 25:403–409

    CAS  Google Scholar 

  • Driscoll CT, Driscoll KM, Roy KM, Dukett J (2007) Changes in the chemistry of lakes in the Adirondack region of New York following declines in acidic deposition. Appl Geochem 22:1181–1188

    CAS  Google Scholar 

  • Elser JJ, Andersen T, Baron JS, Bergström AK, Jansson M, Kyle M, Nydick KR, Steger L, Hessen DO (2009) Shifts in lake N: p stoichiometry and nutrient limitation driven by atmospheric nitrogen deposition. Science 6:835–837

    Google Scholar 

  • Evans CD, Reynolds B, Jenkins A, Helliwell RC, Curtis CJ, Goodale CL, Ferrier RC, Emmett BA, Pilkington MG, Caporn SJM, Carroll JA, Norris D, Davies J, Coull MC (2006) Evidence that soil carbon pool determines susceptibility of semi-natural ecosystems to elevated nitrogen leaching. Ecosystems 9:453–462

    CAS  Google Scholar 

  • Evans CD, Jones TG, Burden A, Ostle N, Zieliński P, Cooper MDA, Peacock M, Clark JM, Oulehle F, Cooper D, Freeman C (2012) Acidity controls on dissolved organic carbon mobility in organic soils. Glob Change Biol 18(11):3317–3331

    Google Scholar 

  • Gerke J (2010) Humic (organic matter)-Al(Fe)-phosphate complexes: an underestimated phosphate form in soils and source of plant-available phosphate. Soil Sci 175(9):417–425

    CAS  Google Scholar 

  • Gerson JR, Driscoll CT, Roy KM (2016) Patterns of nutrient dynamics in Adirondack lakes recovering from acid deposition. Ecol Appl 26(6):1758–1770

    PubMed  Google Scholar 

  • Gislason SR, Oelkers EH, Eiriksdottir ES, Kardjilov MI, Gisladottir G, Sigfusson B, Snorrason A, Elefsen S, Hardardottir J, Torssander P, Oskarsson N (2009) Direct evidence of the feedback between climate and weathering. Earth Planet Sci Lett 277:213–222

    CAS  Google Scholar 

  • Goodale CL, Aber JD, McDowell WH (2000) Long-term effects of disturbance on organic and inorganic nitrogen export in the White Mountains, New Hampshire. Ecosystems 3:433–450

    Google Scholar 

  • Guidry MW, Mackenzie FT (2003) Experimental study of igneous and sedimentary apatite dissolution: control of pH, distance from equilibrium, and temperature on dissolution rates. Geochim Cosmochim Acta 67:2949–2963

    CAS  Google Scholar 

  • Hall K (2004) Evidence for freeze–thaw events and their implications for rock weathering in north Canada. Earth Surf Proc Land 29:43–57

    Google Scholar 

  • Homyak PM, Sickman JO, Melack JM (2014) Pools, transformations, and sources of P in high-elevation soils: implications for nutrient transfer to Sierra Nevada lakes. Geoderma 217–218:65–73

    Google Scholar 

  • Huser BJ, Futter MN, Wang R, Fölster J (2018) Persistent and widespread long-term phosphorus declines in Boreal lakes in Sweden. Sci Total Environ 613–614:240–249

    PubMed  Google Scholar 

  • Kaňa J, Kopáček J, Camarero L, Garcia-Pausas J (2011) Phosphate sorption characteristics of European alpine soils. Soil Sci Soc Am J 75:862–870

    Google Scholar 

  • Kelly CA, Rudd JWM, Hesslein RH, Schindler DW, Dillon PJ, Driscoll CT, Gherini SA, Hecky RE (1987) Prediction of biological acid neutralization in acid-sensitive lakes. Biogeochemistry 3:129–140

    CAS  Google Scholar 

  • Kopáček J, Kaňa J, Šantrůčková H, Picek T, Stuchlík E (2004) Chemical and biochemical characteristics of alpine soils in the Tatra Mountains and their correlation with lake water quality. Water Air Soil Pollut 153:307–327

    Google Scholar 

  • Kopáček J, Stuchlík E, Wright RF (2005) Long-term trends and spatial variability in nitrate leaching from alpine catchment-lake ecosystems in the Tatra Mountains (Slovakia-Poland). Environ Pollut 136:89–101

    PubMed  Google Scholar 

  • Kopáček J, Hejzlar J, Vrba J, Stuchlík E (2011) Phosphorus loading of mountain lakes: terrestrial export and atmospheric deposition. Limnol Oceanogr 56(4):1343–1354

    Google Scholar 

  • Kopáček J, Hejzlar J, Kaňa J, Norton SA, Stuchlík E (2015a) Effects of acidic deposition on in-lake phosphorus availability: a lesson from lakes recovering from acidification. Environ Sci Technol 49:2895–2903

    PubMed  Google Scholar 

  • Kopáček J, Bičárová S, Hejzlar J, Hynštová M, Kaňa J, Mitošinková M, Porcal P, Stuchlík E, Turek J (2015b) Catchment biogeochemistry modifies long-term effects of acidic deposition on chemistry of mountain lakes. Biogeochemistry 125:315–335

    Google Scholar 

  • Kopáček J, Kaňa J, Bičárová S, Fernandez IJ, Hejzlar J, Kahounová M, Norton SA, Stuchlík E (2017) Climate change increasing calcium and magnesium leaching from granitic alpine catchments. Environ Sci Technol 51(1):159–166

    PubMed  Google Scholar 

  • Křeček J, Palán L, Stuchlík E (2019) Impacts of land use policy on the recovery of mountain catchments from acidification. Land Use Policy 80:439–448

    Google Scholar 

  • Mast MA, Turk JT, Clow DW, Campbell DH (2011) Response of lake chemistry to changes in atmospheric deposition and climate in three high-elevation wilderness areas of Colorado. Biogeochemistry 103:27–43

    CAS  Google Scholar 

  • Matsuoka M, Murton J (2008) Frost weathering: recent advances and future directions. Permafrost Periglac 19:195–210

    Google Scholar 

  • Millot R, Gaillardet J, Dupré B, Allégre CJ (2002) The global control of silicate weathering rates and the coupling with physical erosion: new insights from rivers of the Canadian Shield. Earth Planet Sci Lett 196:83–98

    CAS  Google Scholar 

  • Monteith DT, Stoddard JL, Evans CD, de Wit HA, Forsius M, Høgåsen T, Wilander A, Skjelkvåle BL, Jeffries DS, Vuorenmaa J, Keller B, Kopáček J, Veselý J (2007) Dissolved organic carbon trends resulting from changes in atmospheric deposition chemistry. Nature 450:537–540

    CAS  Google Scholar 

  • Morales-Baquero R, Pulido-Villena E, Reche I (2006) Atmospheric inputs of phosphorus and nitrogen to the southwest Mediterranean region: biogeochemical responses of high mountain lakes. Limnol Oceanogr 51:830–837

    CAS  Google Scholar 

  • Moser KA, Baron JS, Brahney J, Oleksy I, Saros JE, Hundey EJ, Sadro SA, Kopáček J, Sommaruga R, Kainz MJ, Strecker AL, Chandra S, Walters DM, Preston DL, Michelutti N, Lepori F, Spaulding SA, Christianson K, Melack JM, Smol JP (2019) Mountain lakes: eyes on global environmental change. Global Planet Change 178:77–95

    Google Scholar 

  • Murphy J, Riley JP (1962) A modified single-solution method for the determination of phosphate in natural waters. Anal Chim Acta 27:31–36

    CAS  Google Scholar 

  • Norton SA, Kahl JS, Henriksen A, Wright RF (1990) Buffering of pH depressions by sediments in streams and lakes. In: Norton SA, Lindberg SE, Page AL (eds) Acidic precipitation. Advances in environmental science, vol 4. Springer, New York, pp 133–157

    Google Scholar 

  • Oulehle F, Kopáček J, Chuman T, Černohous V, Hůnová I, Hruška J, Krám P, Lachmanová Z, Navrátil T, Štěpánek P, Tesař M, Evans DC (2016) Predicting sulphur and nitrogen deposition using a simple statistical method. Atmos Environ 140:456–468

    Google Scholar 

  • Patrick WH, Khalid RA (1974) Phosphate release and sorption by soils and sediments. Science 186:53–55

    CAS  PubMed  Google Scholar 

  • Psenner R (1999) Living in a dusty world: airborne dust as a key factor for alpine lakes. Water Air Soil Pollut 112:217–227

    CAS  Google Scholar 

  • R Development Core Team (2015) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Riebe CS, Kirchner JW, Finkel RC (2004) Sharp decrease in long-term chemical weathering rates along an altitudinal transect. Earth Planet Sci Lett 218:421–434

    CAS  Google Scholar 

  • Rogora M, Colombo L, Lepori F, Marchetto A, Steingruber S, Tornimbeni O (2013) Thirty years of chemical changes in alpine acid-sensitive lakes in the Alps. Water Air Soil Pollut 224:1746–1765

    Google Scholar 

  • Schiff SL, Anderson RF (1986) Alkalinity production in epilimnetic sediments: acidic and non-acidic lakes. Water Air Soil Pollut 31:941–948

    CAS  Google Scholar 

  • Seidl R, Thom D, Kautz M, Martin-Benito D, Peltoniemi M, Vacchiano G, Wild J, Ascoli D, Petr M, Honkaniemi J, Lexer MJ, Trotsiuk V, Mairota P, Svoboda M, Fabrika M, Nagel TA, Reyer CPO (2017) Forest disturbances under climate change. Nat Clim Change 7:395–402

    Google Scholar 

  • Smith EA, Mayfield CI, Wong PTS (1978) Naturally occurring apatite as a source of ortho-phosphate for growth of bacteria and algae. Microb Ecol 4(2):105–117

    CAS  Google Scholar 

  • Stoddard JL, Van Sickle J, Herlihy AT, Brahney J, Paulsen S, Peck DV, Mitchell R, Pollard AI (2016) Continental-scale increase in lake and stream phosphorus: are oligotrophic systems disappearing in the United States? Environ Sci Technol 50:3409–3415

    CAS  PubMed  Google Scholar 

  • Stuchlík E, Bitušík P, Hořická Z, Hardekopf D, Kahounová M, Tátosová J, Vondrák D, Dočkalová K (2017) Complexity in the biological recovery of Tatra Mountain lakes from acidification. Water Air Soil Pollut 228(5):184

    Google Scholar 

  • Thies H, Nickus U, Mair V, Tessadri R, Tait D, Thaler B, Psenner R (2007) Unexpected response of high alpine lake waters to climate warming. Environ Sci Technol 41:7424–7429

    CAS  PubMed  Google Scholar 

  • Thies H, Nickus U, Tolotti M, Tessadri R, Krainer K (2013) Evidence of rock glacier melt impacts on water chemistry and diatoms in high mountain streams. Cold Reg Sci Technol 96:77–85

    Google Scholar 

  • Tipping E, Benham S, Boyle JF, Crow P, Davies J, Fischer U, Guyatt H, Helliwell R, Jackson-Blake L, Lawlor AJ, Monteith DT, Rowe EC, Toberman H (2014) Atmospheric deposition of phosphorus to land and freshwater. Environ Sci Proc Imp 16:1608–1617

    CAS  Google Scholar 

  • Tsugeki NK, Agusa T, Ueda S, Kuwae M, Oda H, Tanabe S, Tani Y, Toyoda K, Wang W, Urabe J (2012) Eutrophication of mountain lakes in Japan due to increasing deposition of anthropogenically produced dust. Ecol Res 27:1041–1052

    CAS  Google Scholar 

  • Vicars WC, Sickman JO (2011) Mineral dust transport to the Sierra Nevada, California: loading rates and potential source areas. J Geophys Res Biogeol 116:G01018

    Google Scholar 

  • Wallander H, Wickman T, Jacks G (1997) Apatite as a P source in mycorrhizal and non-mycorrhizal Pinus sylvestris seedlings. Plant Soil 196:123–131

    CAS  Google Scholar 

  • Welch SA, Taunton AE, Banfield JF (2002) Effect of microorganisms and microbial metabolites on apatite dissolution. Geomicrobiol J 19:343–367

    CAS  Google Scholar 

  • White AF, Schulz MS, Lowenstern JB, Vivit DV, Bullen TD (2005) The ubiquitous nature of accessory calcite in granitoid rocks: implications for weathering, solute evolution, and petrogenesis. Geochim Cosmochim Acta 69:1455–1471

    CAS  Google Scholar 

  • Wolfe AP, Baron JS, Cornett RJ (2001) Anthropogenic nitrogen deposition induces rapid ecological changes in alpine lakes of the Colorado Front Range (USA). J Paleolimnol 25:1–7

    Google Scholar 

Download references

Acknowledgements

This study was supported by the Grant Agency of the Czech Republic (project No. P503/17/15229S). We thank the authorities of the Tatra National Parks (TANAP in Slovakia and TPN in Poland) and State Forests of TANAP for their administrative support. We thank numerous colleagues and students for their field and laboratory help during 1992–2018, particularly geologist R. Pipík for rock sampling and Z. Hořická for chlorophyll a sampling. Participation of T. Navrátil was supported by institutional project RVO67985831.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiří Kopáček.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 295 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kopáček, J., Kaňa, J., Bičárová, S. et al. Climate change accelerates recovery of the Tatra Mountain lakes from acidification and increases their nutrient and chlorophyll a concentrations. Aquat Sci 81, 70 (2019). https://doi.org/10.1007/s00027-019-0667-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00027-019-0667-7

Keywords

Navigation