Skip to main content
Log in

Dimension Reduction for the Full Navier–Stokes–Fourier system

  • Published:
Journal of Mathematical Fluid Mechanics Aims and scope Submit manuscript

Abstract

It is well known that the full Navier–Stokes–Fourier system does not possess a strong solution in three dimensions which causes problems in applications. However, when modeling the flow of a fluid in a thin long pipe, the influence of the cross section can be neglected and the flow is basically one-dimensional. This allows us to deal with strong solutions which are more convenient for numerical computations. The goal of this paper is to provide a rigorous justification of this approach. Namely, we prove that any suitable weak solution to the three-dimensional NSF system tends to a strong solution to the one-dimensional system as the thickness of the pipe tends to zero.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Antontsev, S.N., Kazhikhov, A.V., Monakhov, V.N.: Boundary Value Problems in Mechanics of Nonhomogeneous Fluids. Elsevier, New York (1990)

    MATH  Google Scholar 

  2. Bella, P., Feireisl, E., Novotný, A.: Dimension reduction for compressible viscous fluid. Acta Appl. Math. 134, 111–121 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  3. Carrillo, J., Jüngel, A., Markowich, P.A., Toscani, G., Unterreiter, A.: Entropy dissipation methods for degenerate parabolic problems and generalized Sobolev inequalities. Monatshefte Math. 133, 1–82 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  4. Dafermos, C.M.: The second law of thermodynamics and stability. Arch. Ration. Mech. Anal. 70, 167–179 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  5. Ducomet, B., Feireisl, E.: The equations of magnetohydrodynamics: on the interaction between matter and radiation in the evolution of gaseous stars. Commun. Math. Phys. 266, 595–629 (2006)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  6. Ericksen, J.L.: Introduction to the Thermodynamics of Solids, revised ed. Applied Mathematical Sciences, vol. 131. Springer, New York (1998)

    Book  Google Scholar 

  7. Feireisl, E., Jin, B.J., Novotný, A.: Relative entropies, suitable weak solutions, and weak-strong uniqueness for the compressible Navier-Stoke system. J. Math. Fluid Mech. 14(4), 717–730 (2012)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  8. Feireisl, E., Novotný, A.: Weak–strong uniqueness property for the full Navier–Stokes–Fourier system. Arch. Ration. Mech. Anal. 204, 683–706 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  9. Feireisl, E., Novotný, A.: Singular Limits in Thermodynamics of Viscous Fluids. Birkhaüser, Berlin (2009)

    Book  MATH  Google Scholar 

  10. Iftimie, D., Raugel, G., Sell, G.R.: Navier–Stokes equations in the 3D domains with Navier–Boundary conditions. Indiana Univ. Math. J. 56(3), 1083–1156 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  11. Kawohl, B.: Global existence of large solutions to initial boundary value problems for a viscous heat-conducting, one-dimensional real gas. JDE 58, 76–103 (1985)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  12. Ladyzhenskaya, O.A.: Solution “in the large” to the boundary value problem for the Naviesr-Stokes equations in two space variables. Sov. Phys. Dokl. 3: 1128–1131 (1958) Translation from. Dokl. Akad. Nauk SSSR 123, 427–429 (1958)

    Google Scholar 

  13. Maltese, D., Novotný, A.: Compressible Navier–Stokes equations on thin domains. J. Math. Fluid Mech. 16(3), 571–594 (2014)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  14. Raugel, G., Sell, G.R.: Navier–Stokes equations in thin 3D domains III Existence of a Global Attractor. Turbulence in Fluid Flows, IMA Vol. Math. Appl., vol. 55, pp. 137–163. Springer, New York (1993)

    MATH  Google Scholar 

  15. Raugel, G., Sell, G.R.: Navier–Stokes equations in thin 3D domains I. Global attractors and global regularity of solutions. J. Am. Math. Soc. 6(3), 503–568 (1993)

    MATH  Google Scholar 

  16. Raugel, G., Sell, G. R.: Navier–Stokes equations in thin 3D domains II. Global regularity of spatially periodic solutions. Nonlinear Partial Differential Equations and Their Applications, Collège de France Seminar, vol. XI, Paris, 1989–1991, Pitman res. Notes Math. Ser. 299: 205–247, Longman Sci. Tech., Harlow (1994)

  17. Saint-Raymond, L.: Hydrodynamic limits: some improvements of the relative entropy method. Ann. I. H. Poincaré Anal. 26, 705–744 (2009)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  18. Valli, A.: An existence theorem for compressible viscous fluids. Ann. Mat. Pura Appl. 130(1), 197–213 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  19. Vodák, R.: Asymptotic analysis of steady and nonsteady Navier–Stokes equations for barotropic compressible flow. Acta Appl. Math. 110(2), 991–1009 (2010)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Václav Mácha.

Additional information

Communicated by G.P. Galdi

O.K. acknowledges the support of the GAČR (Czech Science Foundation) project GA13-00522S in the general framework of RVO: 67985840. The research of V.M. has been supported by the Grant NRF-20151009350.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Březina, J., Kreml, O. & Mácha, V. Dimension Reduction for the Full Navier–Stokes–Fourier system. J. Math. Fluid Mech. 19, 659–683 (2017). https://doi.org/10.1007/s00021-016-0301-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00021-016-0301-6

Mathematics Subject Classification

Keywords

Navigation