J. For. Sci., 2024, 70(2):64-78 | DOI: 10.17221/107/2023-JFS

Comparison of growth, structure and production in stands of naturally regenerated Betula pendula and Populus tremulaOriginal Paper

Antonín Martiník ORCID...1, Zdeňek Adamec ORCID...2, Matúš Sendecký ORCID...1, Jan Krejza ORCID...3,4
1 Department of Silviculture, Faculty of Forestry and Wood Technology, Mendel University in Brno, Brno, Czech Republic
2 Department of Forest Management and Applied Geoinformatics, Faculty of Forestry and Wood Technology, Mendel University in Brno, Brno, Czech Republic
3 Global Change Research Institute of the Czech Academy of Sciences, Brno, Czech Republic
4 Department of Forest Ecology, Faculty of Forestry and Wood Technology, Mendel University in Brno, Brno, Czech Republic

In Central Europe, the most important pioneer species are silver birch and European aspen. Changes in disturbance regime and an economic interest for this species have led to studies on this species and stands. Two naturally regenerated dense stands of birch (Betula pendula Roth – silver birch monoculture) and aspen (Populus tremula L. – European aspen monoculture) were selected from a Querceto – Fagetum mesotrophicum site to observe responses under the same conditions in Central Europe. Both stands regenerated after the allochthonous Norway spruce stands dieback at the site in 1999. Within a 10 m × 25 m transect established in both stands, the diameter at breast height (DBH) of all the trees was measured between 2015 and 2020. In addition, the height and position were recorded for all trees, and sample trees of both species were felled for biomass measurement. A higher volume production of aspen at the beginning (107.48/96.80 m3) and at the end of the experiment (178.32/143.08 m3) was accompanied with a lower above-ground wood biomass (WAB). The WAB of birch increased from 81.9 t·ha–1 to 103.3 t·ha–1 and aspen allocated 79.5 t·ha–1 to 94.8 t·ha–1 of biomass. The current annual increment of biomass for these stands was 4.3 t·ha–1 and 3.1 t·ha–1 in the age range of 17 to 22 years. The culmination of the volume increment has not yet occurred in any of the stands, but the mean annual increment of wood biomass has already been reached for both stands. Furthermore, the aspen stand tended to be more dynamic in terms of biomass allocation and mortality. Also, the lower self-tolerance of aspen confirmed our hypothesis: the two native pioneer species differ in their social behaviour within monospecific stands.

Keywords: above-ground wood biomass; aspen; birch; pioneer stands; self-thinning

Received: September 26, 2023; Revised: November 22, 2023; Accepted: November 28, 2023; Prepublished online: February 14, 2024; Published: February 28, 2024  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Martiník A, Adamec Z, Sendecký M, Krejza J. Comparison of growth, structure and production in stands of naturally regenerated Betula pendula and Populus tremula. J. For. Sci.. 2024;70(2):64-78. doi: 10.17221/107/2023-JFS.
Download citation

References

  1. Aun K., Kukumägi M., Varik M., Becker H., Aosaar J., Uri M., Buht M., Uri V. (2021): Short-term effect of thinning on the carbon budget of young and middle-aged silver birch (Betula pendula Roth) stands. Forest Ecology and Management, 480: 1-11. Go to original source...
  2. Brang P., Spathelf P., Larsen J.B., Bauhus J., Boncčìna A., Chauvin C., Drössler L., García-Güemes C., Heiri C., Kerr G., Lexer M.J., Mason B., Mohren F., Mühlethaler U., Nocentini S., Svoboda M. (2014): Suitability of close-to-nature silviculture for adapting temperate European forests to climate change. Forestry, 87: 492-503. Go to original source...
  3. Brzeziecki B., Kienast F. (1994): Classifying the life-history strategies of trees on the basis of the Grimian model. Forest Ecology and Management, 69: 167-187. Go to original source...
  4. Cameron A.D. (1996): Managing birch woodlands for the production of quality timber. Forestry, 69: 357-371. Go to original source...
  5. Clark P.J., Evans F.C. (1954): Distance to nearest neighbor as a measure of spatial relationships in populations. Ecology, 35: 445-453. Go to original source...
  6. Čermák J., Kučera J., Nadezhdina N. (2004): Sap flow measurements with some thermodynamic methods, flow integration within trees and scaling up from sample trees to entire forest stands. Trees, 18: 529-546. Go to original source...
  7. Černý M., Pařez J. (1998): Růstové tabulky dřevin České republiky. Modřín, jedle, jasan, bříza, olše černá, topol, habr, akát, douglaska. Jílové u Prahy, Ústav pro výzkum lesních ekosystémů: 119. (in Czech)
  8. Dobrovolný L., Hurt V., Martiník A. (2011): Založení experimentální plochy s různými způsoby obnovy lesa na ploše po větrné kalamitě. In: Kacálek D., Jurásek A., Novák J., Slodičák M. (eds): Stabilizace funkcí lesa v antropogenně narušených a měnících se podmínkách prostředí. Proceedings of Central European Silviculture, Opočno, June 28-29, 2011: 43-53. (in Czech)
  9. Dubois H., Verkasalo E., Claessens H. (2020): Potential of birch (Betula pendula Roth and B. pubescens Ehrh.) for forestry and forest-based industry sector within the changing climatic and socio-economic context of Western Europe. Forests, 11: 336. Go to original source...
  10. EEA (2006): European Forest Classification. Technical report No 9/2006. Luxembourg, Office for Official Publications of the European Communities: 114.
  11. Ellenberg H. (2009): Vegetation Ecology of Central Europe. 4th Ed. Cambridge, Cambridge University Press: 756.
  12. Fanta J. (1997): Rehabilitating degraded forests in Central Europe into self-sustaining forest ecosystems. Ecological Engineering, 8: 289-297. Go to original source...
  13. Ferm A. (1993): Birch production and utilization for energy. Biomass and Bioenergy, 4: 391-404. Go to original source...
  14. Fischer A., Fischer H.S. (2012): Individual-based analysis of tree establishment and forest stand development within 25 years after wind throw. European Journal of Forest Research, 131: 493-501. Go to original source...
  15. Grime J.P. (1977): Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. The American Naturalist, 111: 1169-1194. Go to original source...
  16. Hein S., Winterhalter D., Wilhelm G.J., Kohnle U. (2009): Wertholzproduktion mit der Sandbirke (Betula pendula Roth): Waldbauliche Möglichkeiten und Grenzen. Allgemeine Forst und Jagdzeitung, 180: 206-219. (in German)
  17. Holuša J., Liška V. (2002): Hypotéza chřadnutí a odumírání smrkových porostů ve Slezsku (Česká republika). Zprávy lesnického výzkumu, 47: 9-15. (in Czech)
  18. Huth F., Wagner S. (2006): Gap structure and establishment of silver birch regeneration (Betula pendula Roth.) in Norway spruce stands (Picea abies L. Karst.). Forest Ecology and Management, 229: 314-324. Go to original source...
  19. Hynynen J. (1993): Self-thinning models for even-aged stands of Pinus sylvestris, Picea abies and Betula pendula. Scandinavian Journal of Forest Research, 8: 326-336. Go to original source...
  20. Hynynen J., Niemistö P., Viherä-Aarnio A., Brunner A., Hein S., Velling P. (2010): Silviculture of birch (Betula pendula Roth and Betula pubescens Ehrh.) in northern Europe. Forestry, 83: 103-119. Go to original source...
  21. IUSS Working Group WRB (2022): World Reference Base for Soil Resources. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps. 4th Ed. Vienna, International Union of Soil Sciences (IUSS): 13.
  22. Johansson T. (1996): Site index curves for European aspen (Populus tremula L.) growing on forest land of different soils in Sweden. Silva Fennica, 30: 437-458. Go to original source...
  23. Johansson T. (1999): Biomass equations for determining fractions of pendula and pubescent birches growing on abandoned farmland and some practical implications. Biomass and Bioenergy, 16: 223-238. Go to original source...
  24. Konôpka B., Pajtík J., Šebeň V., Surový P., Merganičová K. (2021): Young silver birch grows faster and allocates higher portion of biomass into stem than Norway spruce, a case study from a post-disturbance forest. Forests, 12: 1-21. Go to original source...
  25. Korpeľ Š. (1989): Pralesy Slovenska. Bratislava, Veda: 329. (in Slovak)
  26. Krejza J., Světlík J., Pokorný R. (2015): Spatially explicit basal area growth of Norway spruce. Trees, 29: 1545-1558. Go to original source...
  27. Krejza J., Cienciala E., Světlík J., Bellan M., Noyer E., Horáček P., Štěpánek P., Marek M.V. (2021): Evidence of climate-induced stress of Norway spruce along elevation gradient preceding the current dieback in Central Europe. Trees, 35: 103-119. Go to original source...
  28. Liesebach M., Von Wuehlisch G., Muhs G.J. (1999): Aspen for short-rotation coppice plantations on agricultural sites in Germany: Effects of spacing and rotation time on growth and biomass production of aspen progenies. Forest Ecology and Management, 121: 25-39. Go to original source...
  29. Lockow K.W. (1997): Die neue Ertragstafel für Sandbirke - Aufbau und Bestandesbehandlung. Beiträge für Forstwirtschaft und Landschaftsökologie, 31: 75-84. (in German)
  30. Martiník A., Adamec Z. (2016): Rozdíly ve struktuře mladých březových porostů vzniklých na holině a pod porostem v oblasti chřadnoucích smrčin na severní Moravě. Zprávy lesnického výzkumu, 61: 271-278. (in Czech)
  31. Martiník A., Souček J. (2022): Vliv stanovište na růst a produkci vybraných druhů pionýrských dřevin - Review. Zprávy lesnického výzkumu, 67: 155-163. (in Czech)
  32. Martiník A., Dobrovolný L., Hurt V. (2014): Comparison of different forest regeneration methods after windthrow. Journal of Forest Science, 60: 190-197. Go to original source...
  33. Martiník A., Dobrovolný L., Hurt V. (2016): Potenciál kombinované obnovy lesa na kalamitních holinách nižších poloh. Zprávy lesnického výzkumu, 61: 125-131. (in Czech)
  34. Martiník A., Adamec Z., Houška J. (2017): Production and soil restoration effect of pioneer tree species in a region of allochthonous Norway spruce dieback. Journal of Forest Science, 63: 34-44. Go to original source...
  35. Martiník A., Knott R., Krejza J., Černý J. (2018): Biomass utilization of Betula pendula Roth. stands regenerated in the region of allochthonous Picea abies (L.) dieback. Silva Fennica, 52: 1-15. Go to original source...
  36. Michailoff I. (1943): Zahlenmäßiges Verfahren für die Ausführung der Bestandeshöhenkurven. Tharandter forstliches Jahrbuch, 6: 273-279. (in German)
  37. Myking T., Bøhler F., Austrheim G., Solberg E.J. (2011): Life history strategies of aspen (Populus tremula L.) and browsing effects: A literature review. Forestry, 84: 61-71. Go to original source...
  38. Nielsen U.B., Madsen P., Hansen J.K., Nord-Larsen T., Nielsen A.T. (2014): Production potential of 36 poplar clones grown at medium length rotation in Denmark. Biomass and Bioenergy, 64: 99-109. Go to original source...
  39. Niemistö P. (1995): Influence of initial spacing and row-to-row distance on the crown and branch properties and taper of silver birch (Betula pendula). Scandinavian Journal of Forest Research, 10: 235-244. Go to original source...
  40. O'Hara K.L., Ramage B.S. (2013): Silviculture in an uncertain world: Utilizing multi-aged management systems to integrate disturbance. Forestry, 86: 401-410. Go to original source...
  41. Oliver C.D., Larson B.C. (1990): Forest Stand Dynamics. Biological Resource Management Series. New York, McGraw-Hill Book Company: 509.
  42. Perala D.A., Alm A.A. (1990): Regeneration silviculture of birch: A review. Forest Ecology and Management, 32: 39-77. Go to original source...
  43. Petráš R., Pajtík J. (1991): Sústava česko-slovenských objemových tabuliek drevín. Lesnícky časopis, 37: 49-56. (in Slovak)
  44. Poleno Z., Vacek S., Podrázský V., Remeš J., Mikeska M., Kobliha J., Bílek L. (2007): Pěstování lesů II. Teoretická východiska pěstování lesů. Kostelec nad Černými lesy, Lesnická práce: 464. (in Czech)
  45. Pommerening A. (2002): Approaches to quantifying forest structures. Forestry, 75: 305-324. Go to original source...
  46. Pommerening A., Murphy S.T. (2004): A review of the history, definitions and methods of continuous cover forestry with special attention to afforestation and restocking. Forestry, 77: 27-44. Go to original source...
  47. Pretzsch H. (2009): Forest Dynamics, Growth, and Yield. Heidelberg, Springer Berlin: 664. Go to original source...
  48. Reineke L.H. (1933): Perfecting a stand-density index for even-aged forest. Journal of Agricultural Research, 46: 627-638.
  49. Rytter L., Stener L.G. (2005): Productivity and thinning effects in hybrid aspen (Populus tremula L. × P. tremuloides Michx.) stands in southern Sweden. Forestry, 78: 285-295. Go to original source...
  50. Rytter L., Werner M. (2007): Influence of early thinning in broadleaved stands on development of remaining stems. Scandinavian Journal of Forest Research, 22: 198-210. Go to original source...
  51. Špulák O., Souček J., Leugner J. (2014): Structure and potential production of successional forest stands dominated by pioneer species. Beiträge zur Jahrestagung, 2014: 155-159.
  52. Špulák O., Souček J., Leugner J. (2016): Nadzemní biomasa, živiny a spalné teplo v mladém sukcesním porostu přípravných dřevin. Zprávy lesnického výzkumu, 61: 132-137. (in Czech)
  53. Šrámek V., Novotný R., Fadrhonsová V. (2015): Chřadnutí smrkových porostů a stav lesních půd v oblasti severní Moravy a Slezska (PLO 29 a 39). Zprávy lesnického výzkumu, 60: 147-153. (in Czech)
  54. Stark H., Nothdurft A., Block J., Bauhus J. (2015): Forest restoration with Betula ssp. and Populus ssp. nurse crops increases productivity and soil fertility. Forest Ecology and Management, 339: 57-70. Go to original source...
  55. Suchockas V. (2002): Seed dispersal and distribution of silver birch (Betula pendula) naturally regenerating seedlings on abandoned agricultural land at forest edges. Baltic Forestry, 718: 71-76.
  56. Svoboda P. (1957): Lesní dřeviny a jejich porosty. Část III. Prague, SZN: 457. (in Czech)
  57. Tiebel K., Huth F., Wagner S. (2018): Soil seed banks of pioneer tree species in European temperate forests: A review. iForest - Biogeosciences and Forestry, 11: 48-57. Go to original source...
  58. Unseld R., Bauhus J. (2012): Energie-Vorwälder - Alternative Bewirtschaftungsformen zur Steigerung der energetisch nutzbaren Biomasse im Wald durch Integration von schnellwachsenden Baumarten. Freiburg, Schriftenreihe Freiburger Forstliche Forschung: 217. (in German)
  59. Uri V., Varik M., Aosaar J., Kanal A., Kukumägi M., Lõhmus K. (2012): Biomass production and carbon sequestration in a fertile silver birch (Betula pendula Roth) forest chronosequence. Forest Ecology and Management, 267: 117-126. Go to original source...
  60. Viewegh J., Kusbach A., Mikeska M. (2003): Czech forest ecosystem classification. Journal of Forest Science, 49: 74-82. Go to original source...
  61. Worrell R. (1995a): European aspen (Populus tremula L.): A review with particular reference to Scotland I. Distribution, ecology and genetic variation. Forestry, 68: 93-105. Go to original source...
  62. Worrell R. (1995b): European aspen (Populus tremula L.): A review with particular reference to Scotland II. Values, silviculture and utilization. Forestry, 68: 231-244. Go to original source...
  63. Zakopal V. (1958): Vliv březových porostů na půdní stav holin v oblasti křivoklátské. Lesnictví, 10: 877-896. (in Czech)
  64. Zasada M., Bijak S., Bronisz K., Bronisz A., Gawęda T. (2014): Biomass dynamics in young silver birch stands on post-agricultural lands in central Poland. Drewno, 57: 29-39. Go to original source...
  65. Zeide B. (1985): Tolerance and self-tolerance of trees. Forest Ecology and Management, 13: 149-166. Go to original source...
  66. Zeide B. (2004): Intrinsic units in growth modeling. Ecological Modelling, 175: 249-259. Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.