Skip to main content

Modern Approaches to Statistical Estimation of Measurements in the Location Model and Regression

  • Living reference work entry
  • First Online:
Handbook of Metrology and Applications

Abstract

Metrology as the science about measurement is highly intertwined with statistical point estimation. Evaluating and controling uncertainty of measurements and analyzing them by means of exploratory data analysis (EDA) or predictive data mining requires to exploit advanced tools of statistical estimation. The main focus of the chapter is devoted to nonstandard approaches to the analysis of measurements in two fundamental models, namely, the location model and linear regression. Robust regression methods, which are resistant to the presence of outlying (anomalous) measurements, are discussed here. An illustration of their performance over a real dataset related to thyroid disease and a Monte Carlo simulation reveal here the least weighted squares estimator, which has remained quite neglected so far, outperforms much more renowned robust regression estimators in terms of the variability. Further, Bayesian estimation in the location model is revealed here to have the ability to incorporate previous measurements in a very intuitive way. Finally, the chapter gives a warning that linear regression performed on data contaminated by measurement errors yields biased estimates and requires specific estimation tools for the so-called measurement error model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abdellaoui M, Bleichrodt H, Kemel E, L’Haridon O (2021) Measuring beliefs under ambiguity. Oper Res 69:599–612

    Article  MathSciNet  MATH  Google Scholar 

  • Banks D, Cron A, Raskind A (2021) Bayesian metrology in metabolomics. Chemom Intell Lab Syst 208:104208

    Article  Google Scholar 

  • Ben-Tal A, El Ghaoui L, Nemirovski A (2009) Robust optimization. Princeton University Press, Princeton

    Book  MATH  Google Scholar 

  • Broniatowski M, Jurečková J, Kalina J (2018) Likelihood ratio testing under measurement errors. Entropy 20:966

    Article  ADS  MathSciNet  Google Scholar 

  • Buonaccorsi JP (2010) Measurement error. Models, methods, and applications. Chapman & Hall/CRC, Boca Raton

    Book  MATH  Google Scholar 

  • Carroll RJ, Ruppert D, Stefanski LA, Crainiceanu CM (2006) Measurement error in nonlinear models. A modern perspective, 2nd edn. Chapman & Hall/CRC, Boca Raton

    Book  MATH  Google Scholar 

  • Cheng YB, Chen XH, Li HL, Cheng ZY, Jiang R, Lü J, Fu HD (2018) Analysis and comparison of Bayesian methods for measurement uncertainty evaluation. Math Probl Eng 2018:7509046

    MathSciNet  MATH  Google Scholar 

  • Cox MG, Forbes AB, Harris PH (2004) Bayesian estimation methods in metrology. In: Fisher R, Preuss R, Toussaint U (eds) Bayesian inference and maximum entropy methods in science and engineering. Springer, New York

    Google Scholar 

  • Crowder S, Delker C, Forrest E, Martin N (2020) Introduction to statistics in metrology. Springer, Cham

    Book  Google Scholar 

  • Davies L (1990) The asymptotics of S-estimators in the linear regression model. Ann Stat 18:1651–1675

    Article  MathSciNet  MATH  Google Scholar 

  • Evans IG (1965) Bayesian estimation of parameters of a multivariate normal distribution. J R Stat Soc 27:279–283

    MathSciNet  MATH  Google Scholar 

  • Ferrero A, Salicone S, Jetti HV (2019) Bayesian approach to uncertainty evaluation: is it always working? In: 19th international congress of metrology. EDP Sciences, Les Ulis, p 16002

    Google Scholar 

  • Ghosh SK (2019) Bayesian statistical methods. Chapman & Hall/CRC, Boca Raton

    MATH  Google Scholar 

  • Greene WH (2018) Econometric analysis, 8th edn. Pearson Education Limited, Harlow

    Google Scholar 

  • Hald A (2006) A history of parametric statistical inference from Bernoulli to Fisher, 1713 to 1935. Springer, New York

    MATH  Google Scholar 

  • Hebra A (2010) The physics of metrology. All about instruments: from tundle wheels to atomic clocks. Springer, Vienna

    Google Scholar 

  • Hnětynková I, Plešinger M, Sima DM, Strakoš Z, Van Huffel S (2011) The total least squares problem in Ax ≈ B: a new classification with the relationship to the classical works. SIAM J Matrix Anal Appl 32:748–770

    Article  MathSciNet  MATH  Google Scholar 

  • Huber PJ, Ronchetti EM (2009) Robust statistics, 2nd edn. Wiley, Hoboken

    Book  MATH  Google Scholar 

  • Hynek M, Zvárová J, Smetanová D, Stejskal D, Kalina J (2021) Real-time quality control of nuchal translucency measurements using the exponentially weighted moving average chart. Taiwan J Obstet Gynecol 60:84–89

    Article  Google Scholar 

  • Jaynes ET (2003) Probability theory. The logic of science. Cambridge University Press, Cambridge, UK

    Book  MATH  Google Scholar 

  • JCGM (Joint Committee for Guides in Metrology) (2012) International Vocabulary of Metrology – basic and general concepts and associated terms (VIM), 3rd edn. Available online https://www.bipm.org/en/home

  • Jurečková J, Koul HL, Navrátil R, Picek J (2016) Behavior of R-estimators under measurement errors. Bernoulli 22:1093–1112

    Article  MathSciNet  MATH  Google Scholar 

  • Jurečková J, Picek J, Schindler M (2019) Robust statistical methods with R, 2nd edn. CRC Press, Boca Raton

    Book  MATH  Google Scholar 

  • Kahneman D (2011) Thinking, fast and slow. Farrar, Straus and Giroux, New York

    Google Scholar 

  • Kalina J (2014) On robust information extraction from high-dimensional data. Serb J Manag 9:131–144

    Article  Google Scholar 

  • Kalina J (2015) Three contributions to robust regression diagnostics. J Appl Math Stat Inform 11(2):69–78

    Article  MathSciNet  MATH  Google Scholar 

  • Kalina J (2018) A robust pre-processing of BeadChip microarray images. Biocybern Biomed Eng 38:556–563

    Article  Google Scholar 

  • Kalina J, Hlinka J (2017) Implicitly weighted robust classification applied to brain activity research. In: Fred A, Gamboa H (eds) Biomedical engineering systems and technologies BIOSTEC 2016. Springer, Cham, pp 87–107

    Google Scholar 

  • Kalina J, Tichavský J (2020) On robust estimation of error variance in (highly) robust regression. Meas Sci Rev 20:6–14

    Article  Google Scholar 

  • Klauenberg K, Martens S, Bošnjaković A, Cox MG, van der Veen AMH, Elster C (2022) The GUM perspective on straight-line errors-in-variables regression. Measurement 187:110340

    Article  Google Scholar 

  • Kong L, Pan H, Li X, Ma S, Xu Q, Zhou K (2019) An information entropy-based modeling methods for the measurement system. Entropy 21:691

    Article  ADS  MathSciNet  Google Scholar 

  • Krystek M, Anton M (2007) A weighted total least-squares algorithm for fitting a straight line. Meas Sci Technol 18:3438–3442

    Article  ADS  Google Scholar 

  • Krystek M, Anton M (2011) A least-squares algorithm for fitting data points with mutually correlated coordinates to a straight line. Meas Sci Technol 22:035101

    Article  ADS  Google Scholar 

  • Lehmann EL, Casella G (1998) Theory of point estimation, 2nd edn. Springer, New York

    MATH  Google Scholar 

  • Lesurf JCG (2002) Information and measurement, 2nd edn. Institute of Physics Publishing, Bristol

    Google Scholar 

  • Lira I (2016) Beyond the GUM: variance-based sensitivity analysis in metrology. Meas Sci Technol 27:075006

    Article  ADS  Google Scholar 

  • Liu Y, Deng Z, Hu E (2021) Multi-sensor fusion positioning method based on batch inverse covariance intersection and IMM. Appl Sci 11:4908

    Article  Google Scholar 

  • Maronna R, Martin D, Yohai V (2006) Robust statistics: theory and methods. Wiley, New York

    Book  MATH  Google Scholar 

  • Marschall M, Wübbeler G, Elster C (2022) Rejection sampling for Bayesian uncertainty evaluation using the Monte Carlo techniques of GUM-S1. Metrologia 59:015004

    Article  ADS  Google Scholar 

  • Medina D, Li H, Vilà-Valls J, Closas P (2019) Robust statistics for GNSS positioning under harsh conditions: a useful tool? Sensors 19:5402

    Article  ADS  Google Scholar 

  • Nielsen L (2002) Evaluation of measurements by the method of least squares. In: Algorithms for approximation IV. University of Huddersfield, Huddersfield, pp 170–186

    Google Scholar 

  • Ostojski MS, Gębala J, Orlińska-Woźniak P, Wilk P (2016) Implementation of robust statistics in the calibration, verification and validation step of model evaluation to better reflect processes concerning total phosphorus load occurring in the catchment. Ecol Model 332:83–93

    Article  Google Scholar 

  • Papageorgiou G, Bouboulis P, Theodoridis S (2017) Robust nonlinear regression: a greedy approach employing kernels with application to image denoising. IEEE Trans Signal Process 65:4309–4323

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Peremans K, Van Aelst S (2018) Robust inference for seemingly unrelated regression models. J Multivar Anal 167:212–224

    Article  MathSciNet  MATH  Google Scholar 

  • Pešta M (2013) Total least squares and bootstrapping with applications in calibration. Statistics 47:966–991

    Article  MathSciNet  MATH  Google Scholar 

  • R Core Team (2021) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. https://www.R-project.org

  • Raghavendra NV, Krishnamurthy L (2013) Engineering metrology and instruments. Oxford University Press, New Delhi

    Google Scholar 

  • Ramnath V (2020) Comparison of straight line curve fit approaches for determining parameter variances and covariances. Int J Metrol Qual Eng 11:14

    Article  Google Scholar 

  • Robinson A (2007) The story of measurement. Thomas & Hudson, London

    Google Scholar 

  • Rousseeuw PJ, Leroy AM (1987) Robust regression and outlier detection. Wiley, New York

    Book  MATH  Google Scholar 

  • Rousseeuw PJ, Van Driessen K (2006) Computing LTS regression for large data sets. Data Min Knowl Disc 12:29–45

    Article  MathSciNet  MATH  Google Scholar 

  • Saleh A, Picek J, Kalina J (2012) R-estimation of the parameters of a multiple regression model with measurement errors. Metrika 75:311–328

    Article  MathSciNet  MATH  Google Scholar 

  • Saleh A, Arashi M, Saleh RA, Norouzirad M (2022) Rank-based methods for shrinkage and selections with application to machine learning. Wiley, Hoboken

    Book  MATH  Google Scholar 

  • Senin N, Catalucci S, Moretti M, Leach RK (2021) Statistical point cloud model to investigate measurement uncertainty in coordinate metrology. Precis Eng 70:44–62

    Article  Google Scholar 

  • Sheinin OB (1996) The history of the theory of errors. Hänsel-Hohenhausen, Egelsbach

    Google Scholar 

  • Stigler SM (1973) Simon Newcomb, Percy Daniell, and the history of robust estimation 1885–1920. J Am Stat Assoc 68:872–879

    MathSciNet  MATH  Google Scholar 

  • Stigler SM (1986) The history of statistics: the measurement of uncertainty before 1900. Harvard University Press, Cambridge, MA

    MATH  Google Scholar 

  • Tellinghuisen J (2001) Statistical error propagation. J Phys Chem A 105:3917–3921

    Article  Google Scholar 

  • Tin TC, Tan ST, Yong H, Kim JOH, Teo EKY, Lee CK, Than P, Tan APS, Phang SC (2021) A realizable overlay virtual metrology system in semiconductor manufacturing: proposal, challenges and future perspectives. IEEE Access 9:65418–65439

    Article  Google Scholar 

  • Víšek JÁ (2011) Consistency of the least weighted squares under heteroscedasticity. Kybernetika 47:179–206

    MathSciNet  MATH  Google Scholar 

  • Wheeler DJ (2020) Some outlier tests: part one. Comparisons and recommendations. Available at https://www.spcpress.com/pdf/DJW378.pdf

  • Wübbeler G, Marschall M, Elster C (2020) A simple method for Bayesian uncertainty evaluation in linear models. Metrologia 57:065010

    Article  ADS  Google Scholar 

  • Yohai VJ (1987) High breakdown-point and high efficiency robust estimates for regression. Ann Stat 15:642–656

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The work of J. Kalina was supported by the project GA22-02067S (Approximate Neurocomputing) of the Czech Science Foundation. The authors would like to thank an anomymous reviewer for valuable suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Kalina .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Kalina, J., Vidnerová, P., Soukup, L. (2022). Modern Approaches to Statistical Estimation of Measurements in the Location Model and Regression. In: Aswal, D.K., Yadav, S., Takatsuji, T., Rachakonda, P., Kumar, H. (eds) Handbook of Metrology and Applications. Springer, Singapore. https://doi.org/10.1007/978-981-19-1550-5_125-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-1550-5_125-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-1550-5

  • Online ISBN: 978-981-19-1550-5

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics