Skip to main content

Satisfiability of Non-linear Transcendental Arithmetic as a Certificate Search Problem

  • Conference paper
  • First Online:
NASA Formal Methods (NFM 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13903))

Included in the following conference series:

  • 431 Accesses

Abstract

For typical first-order logical theories, satisfying assignments have a straightforward finite representation that can directly serve as a certificate that a given assignment satisfies the given formula. For non-linear real arithmetic with transcendental functions, however, no general finite representation of satisfying assignments is available. Hence, in this paper, we introduce a different form of satisfiability certificate for this theory, formulate the satisfiability verification problem as the problem of searching for such a certificate, and show how to perform this search in a systematic fashion. This does not only ease the independent verification of results, but also allows the systematic design of new, efficient search techniques. Computational experiments document that the resulting method is able to prove satisfiability of a substantially higher number of benchmark problems than existing methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For example, for \(f(x)=x^2-1\), \(deg(f, [-10,10],0)=0\), while \(deg(f,[-10,0],0)=-1\), and \(deg(f,[0,10],0)=1\).

  2. 2.

    Available at https://www.cs.cas.cz/~ratschan/topdeg/topdeg.html.

  3. 3.

    For a description of the two tactics: https://microsoft.github.io/z3guide/docs/strategies/summary. The version of z3 used is 4.5.1.0.

  4. 4.

    The results of the experiments are available at https://doi.org/10.5281/zenodo.7774117.

  5. 5.

    For the results of such experiments, see [21].

References

  1. Aberth, O.: Computation of topological degree using interval arithmetic, and applications. Math. Comput. 62(205), 171–178 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ait-Aoudia, S., Jégou, R., Michelucci, D.: Reduction of constraint systems. CoRR, abs/1405.6131 (2014)

    Google Scholar 

  3. Bak, S., Bogomolov, S., Johnson, T.T.: HYST: a source transformation and translation tool for hybrid automaton models. In: Proceedings of the 18th International Conference on Hybrid Systems: Computation and Control, HSCC 2015, New York, NY, USA, pp. 128–133. Association for Computing Machinery (2015)

    Google Scholar 

  4. Barbosa, H., et al.: Flexible proof production in an industrial-strength SMT solver. In: Automated Reasoning: Proceedings of 11th International Joint Conference, IJCAR 2022, Haifa, Israel, 8–10 August 2022, pp. 15–35. Springer (2022)

    Google Scholar 

  5. Barrett, C., Sebastiani, R., Seshia, S.A., Tinelli, C.: Satisfiability modulo theories. In: Handbook of Satisfiability. Frontiers in Artificial Intelligence and Applications, vol. 336, pp. 1267–1329 (2021). https://doi.org/10.3233/FAIA201017

  6. Brauße, F., Korovin, K., Korovina, M.V., Müller, N.T.: The ksmt calculus Is a \(\delta \)-complete decision procedure for non-linear constraints. In: Platzer, A., Sutcliffe, G. (eds.) CADE 2021. LNCS (LNAI), vol. 12699, pp. 113–130. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-79876-5_7

    Chapter  Google Scholar 

  7. Cimatti, A., Griggio, A., Irfan, A., Roveri, M., Sebastiani, R.: Incremental linearization for satisfiability and verification modulo nonlinear arithmetic and transcendental functions. ACM Trans. Comput. Logic 19(3) (2018)

    Google Scholar 

  8. Cimatti, A., Griggio, A., Schaafsma, B.J., Sebastiani, R.: The MathSAT5 SMT solver. In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013. LNCS, vol. 7795, pp. 93–107. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36742-7_7

    Chapter  MATH  Google Scholar 

  9. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78800-3_24

    Chapter  Google Scholar 

  10. Dulmage, A.L., Mendelsohn, N.S.: Coverings of bipartite graphs. Can. J. Math. 10, 517–534 (1958)

    Article  MathSciNet  MATH  Google Scholar 

  11. Fonseca, I., Gangbo, W.: Degree Theory in Analysis and Applications. Clarendon Press, Oxford (1995)

    MATH  Google Scholar 

  12. Franek, P., Ratschan, S.: Effective topological degree computation based on interval arithmetic. Math. Comput. 84, 1265–1290 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  13. Franek, P., Ratschan, S., Zgliczynski, P.: Quasi-decidability of a fragment of the first-order theory of real numbers. J. Autom. Reason. 57(2), 157–185 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  14. Fränzle, M., Herde, C., Teige, T., Ratschan, S., Schubert, T.: Efficient solving of large non-linear arithmetic constraint systems with complex Boolean structure. JSAT 1, 209–236 (2007)

    MATH  Google Scholar 

  15. Fu, Z., Su, Z.: XSat: a fast floating-point satisfiability solver. In: Chaudhuri, S., Farzan, A. (eds.) CAV 2016. LNCS, vol. 9780, pp. 187–209. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41540-6_11

    Chapter  Google Scholar 

  16. Gao, S., Kong, S., Clarke, E.M.: dReal: an SMT solver for nonlinear theories over the reals. In: Bonacina, M.P. (ed.) CADE 2013. LNCS (LNAI), vol. 7898, pp. 208–214. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38574-2_14

    Chapter  Google Scholar 

  17. Hall, P.: On representatives of subsets. J. London Math. Soc. s1-10(1), 26–30 (1935)

    Google Scholar 

  18. Hansen, E.: Global Optimization Using Interval Analysis. Marcel Dekker, New York (1992)

    MATH  Google Scholar 

  19. Kearfott, R.B.: On proving existence of feasible points in equality constrained optimization problems. Math. Program. 83(1), 89–100 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kremer, G., Reynolds, A., Barrett, C., Tinelli, C.: Cooperating techniques for solving nonlinear real arithmetic in the cvc5 SMT solver (system description). In: Blanchette, J., Kovács, L., Pattinson, D. (eds.) IJCAR 2022. LNCS, vol. 13385, pp. 95–105. Springer, Cham (2022)

    Chapter  Google Scholar 

  21. Lipparini, E., Cimatti, A., Griggio, A., Sebastiani, R.: Handling polynomial and transcendental functions in SMT via unconstrained optimisation and topological degree test. In: Bouajjani, A., Holík, L., Wu, Z. (eds.) ATVA 2022. LNCS, vol. 13505, pp. 137–153. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19992-9_9

    Chapter  Google Scholar 

  22. Mayer, G.: Epsilon-inflation in verification algorithms. J. Comput. Appl. Math. 60, 147–169 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  23. McConnell, R.M., Mehlhorn, K., Näher, S., Schweitzer, P.: Certifying algorithms. Comput. Sci. Rev. 5(2), 119–161 (2011)

    Article  MATH  Google Scholar 

  24. Moore, R.E., Kearfott, R.B., Cloud, M.J.: Introduction to Interval Analysis. SIAM (2009)

    Google Scholar 

  25. Neumaier, A.: Interval Methods for Systems of Equations. Cambridge University Press, Cambridge (1990)

    MATH  Google Scholar 

  26. Richardson, D.: Some undecidable problems involving elementary functions of a real variable. J. Symb. Log. 33(4), 514–520 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  27. Roohi, N., Prabhakar, P., Viswanathan, M.: HARE: a hybrid abstraction refinement engine for verifying non-linear hybrid automata. In: Legay, A., Margaria, T. (eds.) TACAS 2017. LNCS, vol. 10205, pp. 573–588. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54577-5_33

    Chapter  Google Scholar 

  28. Rump, S.M.: Verification methods: rigorous results using floating-point arithmetic. Acta Numer. 287–449 (2010)

    Google Scholar 

  29. Tung, V.X., Van Khanh, T., Ogawa, M.: raSAT: an SMT solver for polynomial constraints. Formal Methods Syst. Design 51(3), 462–499 (2017). https://doi.org/10.1007/s10703-017-0284-9

    Article  MATH  Google Scholar 

  30. Wales, D.J., Doye, J.P.K.: Global optimization by basin-hopping and the lowest energy structures of Lennard-Jones clusters containing up to 110 atoms. J. Phys. Chem. A 101(28), 5111–5116 (1997)

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Alessandro Cimatti, Alberto Griggio, and Roberto Sebastiani for helpful discussions on the topic of the paper. The work of Stefan Ratschan was supported by the project GA21-09458S of the Czech Science Foundation GA ČR and institutional support RVO:67985807.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enrico Lipparini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lipparini, E., Ratschan, S. (2023). Satisfiability of Non-linear Transcendental Arithmetic as a Certificate Search Problem. In: Rozier, K.Y., Chaudhuri, S. (eds) NASA Formal Methods. NFM 2023. Lecture Notes in Computer Science, vol 13903. Springer, Cham. https://doi.org/10.1007/978-3-031-33170-1_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-33170-1_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-33169-5

  • Online ISBN: 978-3-031-33170-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics