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ABSTRACT

This paper is devoted to solutions of the Dirichlet problem for
the Oseen system with Coriolis term –�u(z) + ��

1
u(z) – (� × z) �

�u(z) + ��× u(z) + �p(z) = f (z), � . � in �, u = g on �� in the

homogeneous Sobolev space 1, 3( ; ) ( )q qW L� � �� �  with 2 � q < 3.

Here �� � � 3 is an exterior domain. Kracmar, Necasová
and Penel proved that if � has boundary of class �2, g � 0 and
f � D–1,q(�; �3), then there exists a unique solution of the
problem. This paper shows that this result holds true even for
domains with Lipschitz boundary. Moreover, we prove unique
solvability of the problem for general g � W1–1/q,q(��;��3) and
f � D–1,q(�; �3).

Key words: Oseen system with Coriolis term.

1. INTRODUCTION

This paper is devoted to the Dirichlet problem for the Oseen system with
Coriolis term

–�u(z) + r�
1
u(z) – (� × z) ���u(z) + � × u(z) + �p(z) = f(z), in � (1)

��� u = 0 in �, (2)

u = g on �� (3)

Here ��� �3 is an unbounded domain with compact Lipschitz boundary,
� = (�, 0, 0) and �, ��� �1 \ {0}. This problem arises by linearization and
normalization of a mathematical model describing the stationary flow of a
viscous incompressible fluid around a rigid body moving at a constant
velocity and rotating at a constant angular velocity, under the assumption
that the velocity of the body and its angular velocity are parallel to each
other. More information on physical background can be found in G.P.
Galdi(2002) or Š. Necasová et al. (2016).

The problem (1)–(3) has been studied by many authors. (See for example
R. Farwig et al.(2007), R. Farwig et al.(2011), R. Farwig et al.(2008), R. Farwig
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and J. Neustupa (2007), H. Heck et al.(2012), S. Kracmar et al. (JMSJ 2010),
M. Kyed (QAM 2013), M. Kyed (DCDS 2013).) The papers R. Farwig et al.
(2009), G.P. Galdi (2011), G.P. Galdi et al. (2007), D. Kim (2018) and M. Kyed
(2014) studied the problem in homogeneous Sobolev spaces D2,q (�; �3) ×
D1,q(�). The papers �. Farwig et al. (2011), G.P. Galdi (2011), T. Hishida
(2006), D. Kim (2018), D. Kim (2019) and S. Kracmar et al. (QAM 2010) are
devoted to solutions of the problem in D1,q(�; �3) × Lq

loc
(�). Very weak

solutions of the problem with u � Lq(�; �3) are in D. Kim (2018).

We are going to study the problem in D1,q (�; �3) × Lq
loc

(�). Let us gather
the known results. D. Kim writes in D. Kim (2018): Let W be an unbounded
domain with compact smooth boundary. If g � H1/2(W; R3) and f � 0, then
there exists a unique solution (u, p) � [D1,2(W; R3) � L4(W; R3)] × L2(W) of
(1)–(3). G.P. Galdi proves in G.P. Galdi (2011): Let W be an unbounded
domain with compact Lipschitz boundary. Let g � H1/2(�W, R3), f � D–1,2(W,
R3). Then there exists at least one solution (u, p) � D1,2(W, R3) × L2

loc
(W) of

(1)–(3) such that

(0;1)

( ) ( )
B

u rx d x
�

��  
= o(r–1/2) as r ���.

D Kim shows in D. Kim (2019): Let � have smooth boundary. Suppose that
f = f

1
 + f

2
, f

1
 � D–1,2 (�; �3), f

2
 � L4/3 (�; �3) and g � W1/2,2 (�; �3). Then  there

exists a unique solution u � D1,2  (�; �3) � L4(�; �3) of (1)–(3) such that

u(x) � 0, �x�����.

S. Kracmar, Š. Necasová and P. Penel proved in S. Kracmar et al. (QAM
2010) the following result: Let � be an unbounded domain with compact
boundary of class �2, g � 0 and f � D–1,q (�, �3) with 3/2 < q < 3. Then there
exists a unique solution (u, p) � D

0
1,q (�, �3) × Lq(�) of (1), (2). (That means

that (u, p) is a solution of the problem (1)–(3) with g � 0 in 1,qW� (�; �3) ×
Lq(�).)

This paper studies the problem (1)–(3) for exterior domains with
Lipschitz boundary. It is shown that there exists a unique solution (u, p) in
the space 1,qW� (�; �3) × Lq(�) of (1)–(3) for f � D–1,q (�; �3) and g � W1–1/q,q

(��; �3) with 2 � q < 3. Remark that u � D
0
1,q (�, �3) if and only if u � 1,qW� (�;

�3) and the trace of u is zero, i.e. if g � 0. So, our result is a generalization of
the result of S. Kracmar et al. (QAM 2010) under the assumption that 2 � q
< 3. (For the definition of function spaces see the next section.)

2. FUNCTION SPACES

Let ��� Rm be a domain (i.e. an open connected set), 1 � q ��� and k � N. We
denote by Wk,q (�) the classical Sobolev space, i.e. Wk,q (�) := {u ��Lq (�); ��u
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� Lq (�) � ��� � k}. If M = � or M � �  we denote by W
loc
k,q (M) the set of all

functions u on � such that u � Wk,q (G) for each bounded open set G with
G M� . Denote by �

c
� (�) the space of infinitely differentiable functions

with compact support in � and by W
0
k,q (�) the closure of �

c
�(�) in Wk,q(�).

Further denote by W–k,q(�) the dual space of W
0
k,q�(�) with q� = q/(q – 1).

The homogeneous Sobolev space Dk,q(�) consists of distributions on
with derivatives of the order k in Lq(�). If u � Dk,q(�) then u � W

loc
k,q (�) by

§1.2.3 in V.G. Maz’ya et al. (1997). If � has compact Lipschitz boundary

then Dk,q (�) � , ( )k q
locW �  (see Proposition 1.25.2 in D. Medková (2018)).

Fix a bounded open set G such that G � �. Then Dk,q (�) is a Banach
space with the norm

��u��
Dk,q(�)

 := ��u��
Lq(G)

 + ���ku��
Lq(�)

.

Moreover, different choices of G give equivalent norms. (See §1.5.3,
Corollary 2 in V.G. Maz’ya et al. (1997).) If � is a bounded domain with
Lipschitz boundary then Dk,q (�) = Wk,q (�) and the corresponding norms
are equivalent. (See §1.5.2­§1.5.4 in V.G. Maz’ya et al. (1997)).

Denote by D
0
k,q (�) the closure of �

c
�(�) in Dk,q(�). If �  ���m then ������

Lq(�)

is an equivalent norm in D1,q(�). (See Lemma 1.25.4 in D. Medková (2018).)
Denote by D–1,q(�) the dual space of D1,q�(�) with q� = q/(q – 1).

Denote , ( )k qW ��  := {u��; u � D
0
k,q (�m)}. If � has compact Lipschitz

boundary then , ( )k qW ��  is the closure of �
c
� (�m) in Dk,q(�).

Suppose now that � has compact Lipschitz boundary. If 0 < s < 1 and 1
< q < � we denote by Ws,q(��) the set of all f � Lq(��) with �� f ��

Ws,q(��)
 < �,

where

, 1( ) ( )

( ) ( )
: * ( ) ( )s q q

q

q
q

m qsW L

f x f y
f f d x d y

x y
� ��� �� �����

�
� � � �

��
Then there exists a unique linear continuous mapping �� (called trace

mapping) from W1,q(�) onto W1–1/q,q(��) such that ��u = u on �� for all u �
W1,q(�)� �� � 0,1(�), where 0,1( )��  is the space of Lipschitz continuous

functions on �. (See Theorem 1.5.1.2 in P. Grisvard (2011).) Similarly, there
is a unique linear continuous mapping �� : D1,q(�) � W1–1/q,q(��) such that

��u = u on ���for all u � D1,q(�) � � 0,1(�).

The following lemmas are well known. We prove them for the lack of
references.
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Lemma 2.1: Let ��� �m be an open set with compact Lipschitz boundary.
Suppose that 1 < r < q < �. Then W1–1/q,q(��) � W1–1/r,r(��).

Proof: Without lost of generality we can suppose that � is bounded.
According to Theorem 1.5.1.2 in P. Grisvard (2011) there exists a bounded
operator E : W1–1/q,q(��) � W1,q(�) such that ��Eu = u for all u � W1–1/q,q(��).
Hölder’s inequality gives W1,q(�) � W1,r(�). Since the trace �� : W1,r(�) �
W1–1/r,r(��) is continuous and ��Eu = u for u � W1–1/q,q(��), we infer W1–1/q,q

(��) � W1–1/r,r(��).

Lemma 2.2: Let ��� �m be an open set with compact Lipschitz boundary.
Suppose that 1 < r < q < �. Then W–1/q,q(��) � W–1/r,r(��).

Proof: Denote q� = q/(q – 1) and r� = r/(r – 1). Since q� < r� Lemma 2.1
forces W1–1/r�,r�(��) � W1–1/q�,q�(��). As 1/q = 1 – 1/q� and 1/r = 1 – 1/r��we infer

W–1/q,q(��) = [W1/q,q�(��)]� = [W1–1/q�,q�(��)]� � [W1–1/r�,r�(��)]�
= [W1/r,r�(��)]� = W–1/r,r(��).

Proposition 2.3: Let ��� �m be an unbounded domain with compact
Lipschitz boundary or � = �m. Suppose that 1 < q < m. Denote by P

0
(�m) the

space of constant functions in �m. Then D1,q(�) = W� 1,q(�) � P
0
(�) and W� 1,q(�)

is formed by u � D1,q(�) such that

(0;1)
lim ( ) ( ) 0

Br
u rx d x

���
� ��

where B(z; r) = {x � �m; �z – x� < r}. If u � W� 1,q(�) then u � Lm/(m–q)(�).

(See Lemma 18 in D. Medková (2019), Proposition 3.38.5 and Proposition
3.38.4 in D. Medková (2018).)

Remark that the claims of Proposition 2.3 stop to hold for q � m.

3. DIRICHLET PROBLEM IN A BOUNDED DOMAIN

In this section we study the Dirichlet problem in a bounded domain. We
begin with the Dirichlet problem for the homogeneous Stokes system.

Proposition 3.1: Let ��� �3 be a bounded domain with Lipschitz
boundary. Denote by n� the unit exterior normal of �. Let 2 � q < 3 and g �
W1–1/q,q(��; �3). Then there exists a solution (u, p) � W1,q(�; �3) × Lq(�) of

–�u + �p = 0, ��� u = 0 in � (4)

with the Dirichlet condition (3) if and only if

0.n gd�

��
� � �� (5)
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A velocity u is unique, a pressure p is unique up to an additive constant.

Proof: If (u, p) � W1,q (�; �3) × Lq(�) is a solution of (4), (3), then Green’s
formula gives

0.n gd udx�

�� ��
� � � � � �� �

Let (u, p) � W1,q(�; �3) × Lq(�) be a solution of (4), (3) with g � 0. Hölder’s
inequality gives that (u, p) � W1,2(�; �3) × L2(�). So, u � 0 and p is constant
by Theorem IV.1.1 in G.P. Galdi (2011).

We now show the existence of a solution. We use the integral equation
method. Denote by E = (E

ij
) the velocity part of the fundamental solution

for the Stokes system and by Q = (Q
j
) the pressure part of this fundamental

solution. Here

3 3

1 1
( ) ,  ( ) .

8 4

i j j

ij ij j

x x x
E x Q x

x x x

� �
� � � �� �� �� �

where x � �3 \ {0} and i, j = 1, 2, 3. If f � W–1/q,q(��; �3) then we define the
velocity part of the single layer potential with the density f by

E��f(x) := ��f, E(x – �)�, x � �3 \ ��
and the pressure part of the single layer potential with the density f by

Q� f(x) := ��f, Q(x – �)�, x � �3 \ ��.

If u = E��f and p = Q� f then (u, p) is a classical solution of (4). (See for
example M. Mitrea et al. (2012).) Moreover, E�f � W1,q(�; �3). (We can
consider � as a subset of a compact manifold and use Theorem 3.1 in M.

Mitrea et al. (2001).) Define 1, 3 3( ; )qf W R R���  by

� f� , v� := � f, ��v�, v � W1,q (R3; R3).

Since Q� f = Q � f�, Lemma 8 in D. Medková (2019) gives that Q� f �
Lq(�). Denote ���f := ��E�f . According to Theorem 10.5.3 in M. Mitrea et al.
(2012)

�� : Bq,q
–1/q

(��; �3) � Bq,q
1–1/q

(��; �3)

is a Fredholm operator with index 0 between these Besov spaces. Remember
that Bq,q

–1/q
(��; �3) = W–1/q,q(��; R3) and Bq,q

1–1/q
(��; �3) = W1–1/q,q(��; �3). (See

Proposition 2.5.1 in M. Mitrea et al. (2012), Proposition 2.52 in I. Mitrea et
al. (2013) and Lemma 36.1 in L. Tartar (2007).)

Denote by C
1
, ..., C

k
 all bounded components of R3\�. Fix zj � C

j
 for j =

1, ..., k. Put
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3
( ) : .

j

j j

x z
w x

x z

�
�

�

Define  �
j
(x) := �x – z

j
�–1. Then ��

j
 = 0 in � by Remark 2.1.3 in D. Medková

(2018). Since w
j
 = ��

j
 we have �w

j
 = �(��

j
) = 0 and ��w

j
 = ��

j
 = 0 in �. For f

� W–1/q,q(��, �3) define

1

, .
k

j j
j

E f E f w f w� �
�

� ���

Then 1, 3( , )qE f W� �� �� � . If �3\�  is connected then E f�
� = E��f . Since

�w
j
 = 0 and ��� w

j
 = 0 in �, we obtain

0,  0 in .E f Q f E f� � ��� �� � � � � �� �

Denote : .f E f� � �� ���� �  Then (u, p) = ( , )E f Q f� �
�  is a solution of (4), (3) if

and only if f���
� = g. Since � ���� ��  : W–1/q,q(��; �3) � W1–1/q,q(��; �3) is finite­

dimensional and therefore compact, the operator ���
�  : W–1/q,q(��; �3) � W1–

1/q,q (��; �3) is Fredholm with index 0. According to Proposition 4 in D.
Medková et al. (2015) we have

� �1/ 2,2 3 1/ 2 ,2 3( ( , )) ( , );  0 .W g W g n� �
� ��

�� � � �� � ����� � �

Since ���
�  : W–1/2,2(��; �3) � W1–1/2,2 (��; �3)  is a Fredholm operator with

index 0, the dimension of its kernel is equal to 1. Since W–1/q,q(��; �3) � W–

1/2,2 (��; �3) by Lemma 2.2, the dimension of the kernel of the operator ���
�  :

W–1/q,q (��; �3) � W1–1/q,q(��; �3) is at most 1. Since

0n fd�
���

� � �� ��

by (5), we infer that

� �1/ , 3 1 1/1, , 3( ( , )) ( , );  0 .q q q qW g W g n� � �
� ��

�� � � �� � ����� � �

So, if g � W1–1/q,q(��, �3) satisfies (5), then there exists a solution (u, p) �
W1,q(�; �3) × Lq(�) of (4).

Now we are able to study the Oseen system with Coriolis term.

Theorem 3.2: Let ��� �3 be a bounded domain with Lipschitz boundary.
Suppose that �, ��� �1, � = (�, 0, 0), f � W–1,q(�; �3), g � W1–1/q,q(��; �3) and h �
Lq(�) with 2 � q < 3. Then there exists a solution (u, p) � W1,q(�; �3) × Lq(�) of
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–�u(z) + ��
1
u(z) – (� × z) ���u(z) + � × u(z) + �p(z) = f(z) in �, (6)

��� u = h in � (7)

with the Dirichlet condition (3) if and only if

.n gd hdx�

�� �
� � �� � (8)

A velocity u is unique, a pressure p is unique up to an additive constant.

Proof: If (u, p) � W1,q(�; �3) × Lq(�) is a solution of (7), (3) then Green’s
formula gives

.n gd udx hdx�

�� � �
� � � � � �� � �

Suppose now that (u, p) � W1,q(�; �3) × Lq(�) is a solution of (6), (7), (3)
with h � 0, f � 0 and g � 0. Hölder’s inequality forces that (u, p) � W1,2(�; �3)
× L2(�). Since

–�u(z) + �
1
u(z) – (��× z) ���u(z) + � × u(z) + �p(z) = (1 – �)�

1
u(z) � L2(�),

Lemma 2.3 in R. Farwig and J. Neustupa (2007) forces that (u, p) is in

the space 2,2 3 1,2( ; ) ( ).loc locW W� � ��  Fix v � �
c
� (�; �3). Choose a domain G

with smooth boundary such that v is supported in G and G � �. Since v =
0 on �G, Green’s formula gives

0 = � �1

1 1
[ ) ] ( )

2 2
G G

G

u
v rn u z n u pn d z

n�

�
� � � �� � � �

��

1 1

1 1 1
{ [( ) ]

2 2 2G
v u v u v u u v v z u� � �� � �� � � � � � � � � �� ���

1
[( ) ] ( )}

2
u z v v p p v dz� � �� �� � �� � � �

1{ [ ( ) ( ) ( ) ( ) ( ) ( )]
G

v u z r u z z u z u z p z v u� � � �� � � � �� �� � �� �� �� ���

1 1

1 1 1 1
[( ) ] [ ) ] ( )

2 2 2 2
v u u v v z u u z v v u� � � � � � � � �� �� � � �� �� � � ��

( )}p v dz� � �

1 1

1 1 1 1
{ [( ) ] [( ) ]

2 2 2 2
v u v u u v v z u u z v

�
� � �� � � � � � � � � �� �� � � �� ���

( ) ( )} .v u p v dz� � �� � � �
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Since u = 0 on �� there exists a sequence {v
n
} � �

c
� (�; �3) such that v

n
 �

u in W1,2(�; �3). (See Theorem 6.6.4 in A. Kufner et al. (1977).) So,

0 = 1 1

1 1 1 1
lim { [( ) ] [( ) ]

2 2 2 2n n n n n
n

v u v u u v v z u u z u
���
� �� � � � � � � � � �� �� � � �� ���

( ) ( )}n nv u p v dz� � �� � � �

1 1

1 1 1 1
{ [( ) ] [( ) ]

2 2 2 2n n nv u u u u u u z u u z u
�

� � �� � � � � � � � � �� �� � � �� ���
+ u � (� × u) – p(��� u)}dz

2
( ) .u u u dz

�
� �� � � � ��� ��

Since � × u(z) is orthogonal to u(z), we infer that

2
0 .

u
u dz� ��

Since �u � 0, the velocity u is constant. As u = 0 on ��, we deduce that
u � 0. Therefore �p(z) = �u(z) – ��

1
u(z) + (� × z) ���u(z) – � × u(z) = 0 and the

pressure p is constant.

Now we show the existence of a solution of the problem under the
condition (8). We begin with the Stokes system, i.e. with ��= � = 0. Suppose
that the condition (8) is satisfied. Choose a bounded domain D � �3 with

smooth boundary such that � � D. We can consider W
0
1,q�(�) to be a closed

subspace of W
0
1,q�(D), where q� = q/(q – 1). According to the Hahn­Banach

theorem there exists F � W–1,q(D; �3) such that �F, v� = �� f, v� for all v �
W

0
1,q� (�). Define h := c on �3\�, where c is a constant such that

0
D

hdx ��
According to Theorem 2.1 in G.P. Galdi et al.(1994) there exists a solution

( , )u p� �  � W1,q(D; �3) × Lq(D) of

,  in ,  0 on .u p F u h D u D�� �� � �� � � �� � � �

Remark that ( , )u p� �  � W1,q(�; �3) × Lq(�) is a solution of (6), (7). Put g�  =

u�  on ��. Then g� � W1–1/q,q(��; �3) and

n gd�

��
� �� � = .hdx

��
Hence
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( )n g g d�

��
� � �� � = 0.ndx hdx

� �
� �� �

Proposition 3.1 forces that there exists a solution (w, �) � W1,q(�; �3) ×
Lq(�) of

–�w + �� = 0, ��� w = 0 in �, w = g – g�  on ��.

Put u := u�  + w, p := p�  + �. Then (u, p) � W1,q(�; �3) × Lq(�) is a solution of
(6), (7), (3).

Let now � and � be general. Denote

S�,�(u, p) := –�u(z) + ��
1
u(z) – [(�, 0, 0) × z] ���u(z) + (�, 0, 0) × u(z) + �p(z).

Then S�,� : W
1,q(�; �3) × Lq(�) � W–1,q(�; �3) is bounded by Theorem

1.4.4.6 and Theorem 1.5.1.2 in P. Grisvard (2011). We show that S�,� – S
0,0

 is
compact. Clearly

(S�,� – S
0,0

)(u, p) = ��
1
u(z) – [(�, 0, 0) × z] ���u(z) + (�, 0, 0) × u(z).

If v � �
c
� (�; �3) choose a domain G with smooth boundary such that v

is supported in G and G  ���. Since v = 0 on �G, Green’s formula gives

0 = 1{ [( ,0,0) ) ] } ( )G

G
v rn u z n u d z

�
� � � � � ��

1 1{ [( ,0,0) ) ] [( ,0,0) ) ]}
G

v u u v v z u u z v
�

� � � � � � � � � � �� � � � � ���
Thus

, 0,0 1( )( , ), { [( ,0,0) ) ] [( ,0,0) ]} .S S u p v u v u z v v u dz� � �
� � �� � � � � � �� � � � ��

Density argument forces that this equality holds for arbitrary v � W
0
1,q�

(�; �3) with q� = q/(q – 1). Since W1,q(�) � Lq(�) compactly by Lemma 18.4
in L. Tartar (2007), the operator S�,� � S

0,0
 : W1,q (�; �3) × Lq(�) � W–1,q (�; �3)

is compact.

Define P�,�(u, p) := (S�,�(u, p), ��� u, ��u). We have proved that

P
0,0

 : W1,q(�; �3) × Lq(�) � W–1,q(�; �3) × Lq(�) × W1–1/q,q(��; �3)

is a Fredholm operator with index 0. Since P�,� – P
0,0

 = (S�,� – S
0,0

, 0, 0) and S�,�
– S

0,0
 : W1,q (�; �3) × Lq(�) � W–1,q (�; �3) is compact, the operator

P�,� : W
1,q(�; �3) × Lq(�) � W–1,q(�; �3) × Lq(�) × W1–1/q,q(��; �3)

is a Fredholm operator with index 0, too. We have proved that the
dimension of the kernel of P�,� is equal to 1. So, the co­dimension of the
range of P�,� is also equal to 1. Therefore there exists a solution (u, p) � W1,q

(�; �3) × Lq(�) of (6), (7), (3) if and only if (8) holds.
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4. DIRICHLET PROBLEM IN AN EXTERIOR DOMAIN

Now we are going to study the problem (1)–(3) in an exterior domain. We
need the following auxiliary results.

Lemma 4.1: Let ��� �3 be an unbounded domain with compact smooth
boundary, ��� 0, � = (�, 0, 0). Let 1 < q(1) < �. Assume that f � 0 and u � Lq(1)
(�; �3), p � L1

loc
(�) satisfy (1), (2) in the sense of distributions. Let 2 � q(2) <

4. Fix r � (0, �) such that ���� B(0; r). Then u � D1,q(2) (�\ (0; )B r ; �3) and

there exists p�
�� �1 such that p – p�

�� Lq(2)(�\ (0; )B r ).

(See Lemma 4.1 in D. Kim (2018).)

Lemma 4.2: Let ��� �3 be an unbounded domain with compact
Lipschitz boundary, � = (�, 0, 0) and q, s � (1, �). If (u, p) � W

loc
2,q (�, �3) × W

loc
1,q

(�), u � Ls(�; �3) is a solution of (1)–(3) with f � 0, g � 0 satisfying

��
�

� ��
(0;1)

lim ( ) ( ) 0,
r

B

u rx d x
(9)

then u � 0 and �p � 0.

(See Theorem VIII.7.1 in G. P. Galdi(2011).)

Theorem 4.3: Let ��� �3 be an unbounded domain with compact
Lipschitz boundary. Suppose that �, ��� �1\{0}, � = (�, 0, 0), f � D–1,q (�; �3)
and g � W1–1/q,q (��; �3) with 2 � q < 3. Then there exists a unique solution (u,
p) � 1,qW� (�; �3) × Lq(�) of (1)–(3).

Proof: Suppose first that � > 0. Choose an unbounded domain G � �3

with smooth boundary such that � � G. We can consider D
0
1,q�(�) to be a

closed subspace of D
0
1,q� (G). (Here q� = q/(q – 1).) According to the Hahn­

Banach theorem there exists F � D–1,q(G; �3) such that �F, v� = ��f, v�� for all v
� D

0
1,q��(�; �3). Theorem 2.1 in S. Kracmar et al. (QAM 2010) gives that there

exists a solution (w, �) � D
0
1,q (G; �3) × Lq(G) of

–�w(z) + ��
1
w(z) – (� × z) ���w(z) + � × w(z) + ��(z) = F(z), ����w = 0 in G.

 Clearly, w � 1,qW� (�; �3), ��� Lq(�) and (w, �) is a solution of (1), (2).

Moreover, ���w � W1–1/q,q (��; �3). Put g�  := g – ��w. Lemma 2.1 gives that g�
� W1–1/q,q (��; �3) � W1/2,2(��; �3). According to Theorem VIII.1.2 in G. P.
Galdi (2011) there exists ( , )u p� � � D1,2(�, �3) × L2

loc
(�) such that

–�u� (x) + ��
1
u� (x) – (� × x) ���u�(x) + � × u�(x) + �p� (x) = 0, ��� u�  = 0 in �, (10)

u� = g�  on ��,

(0:1)
( ) )( )

B
u x d x

�
� �� � = o(r 1/2) as r ���. (11)
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Proposition 2.3 gives that u�  � W� 1,2(�; �3). Fix r � (0, �) such that ����
B(0; r) and put V :=  ��� B(0; r). Define g�  := u�  on �V \ ��. Then g�  � W1–1/q,q

(�V; �3) because u�  � ��(�; �m). (See Theorem VIII.1.1 in G.P. Galdi (2011).)
According to Theorem 3.2

0.V

V
n g d

�
� � �� �

Applying again Theorem 3.2 we get that there is a solution ( , )v �� �  in the
space W1,q(V; �3) × Lq(V) of

–�v� (x) + ��
1
v� (x) – (� × x) ���v� (x) + � × v� (x) + ��� (x) = 0, ��� v�  = 0 in V,

v� = g�  on �V

Hölder’s inequality gives that ( , )v �� �  � W1,2(V; �m) × L2(V). Uniqueness
result of Theorem 3.2 forces that there exists a constant c such that u�  = v�
and p�  = ��  + c. Hence ( , )u p� �  � W1,q(V; �3) × Lq(V).

Since u�  � W� 1,2(�; �3), Proposition 2.3 forces that u�  � L3(�; �3). Lemma

4.1 gives that there exists a constant p� such that (u� , p�  – p�) � D1,q(�\V ; �3)

× Lq(�\V). Since u�  satisfies (11), we have e u�  � W� 1,q(�\V ; �3) by Proposition
2.3.

Put u := w + u� , p := � + p�  – p�. Then (u, p) �W� 1,q(�; �3) × Lq(�) is a
solution of (1)–(3).

Suppose now that (u, p) � W� 1,q(�; �3) × Lq(�) is a solution of (1)–(3)
with f ��0, g � 0. Then u � ��(�; �3) and p � ��(�) by Theorem VIII.1.1 in
G.P. Galdi (2011). Proposition 2.3 forces that u satisfies (9). Moreover, u �
L3/(3–q)(�; �3) by Proposition 2.3. Hence u � 0 and �p � 0 by Lemma 4.2. So,
p is constant. Since p � Lq(�) we infer that p � 0.

Let now � < 0. For x = [x
1
, x

2
, x

3
] denote x�  = [–x

1
, x

2
, x

3
]. Put ��  := {x� ; x �

�}. For a function � defined on � define a function ��  on ��  by

( ) : ( ).x x� � �� �

Remark that p�  � Lq(�� ) if and only if p � Lq(�), and u�  � 1,qW� (�� ; �3) if

and only if u � 1,qW� (�; �3). Define �g(x) := g(x�) for x ����� , and � f� , v� := ��f,
v� ��for v � D

0
1,q� (�� ; �3) with q� = q/(q – 1). Clearly, (u, p) is a solution of (1)–(3)

if and only if (u� , �) with � := – p�  is a solution of

�� � � � �� �� � �� ���� � � �
1( ) ( ) ( ) ( ) ( ) ( )u z r u z z u z u z z = f� (z),

����u� = 0 in �� ,

u� = �g  on ��� .
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Therefore there exists a unique solution (u, p) � 1,qW� (�; �3) × Lq(�) of
(1)–(3).

References

[1] Farwig, R., Galdi, G. P. and Kyed, M. (2011), ”Asymptotic structure of a Leray
solution to the Navier­Stokes flow around a rotating body”, Pacific J. Math. 253,
367–382.

[2] Farwig, R. and Hishida, T. (2007), ”Stationary Navier­Stokes flow around a rotating
obstacle”’, Functialaj Ekvacioj 50, 371–403.

[3] Farwig, R. and Hishida, T.(2011), ”Leading term at infinity of steady Navier­Stokes
flow around a rotating obstacle”, Math. Nachr. 284, 2065­2077.

[4] Farwig, R., Kracmar, S., Krbec, M., Necasová, Š. and Penel, P. (2009), ”Weighted L2

and Lq approaches to fluid flow past a rotating body”, in P.B. Mucha (ed.) et al.,
Nonlocal and abstract parabolic equations and their applications. Based on the
conference, Bedlewo, Poland, 2007. Warsaw: Polish Academy of Sciences, Institute
of Mathematics. Banach Center Publications 86, 59–81.

[5] Farwig, R., Krbec, M. and Necasová, Š. (2008), ”A weighted Lq­approach to Oseen
flow around a rotating body”, Math. Meth. Appl. Sci. 31, 551–574.

[6] Farwig, R. and Neustupa J. (2007), ”On the spectrum of a Stokes­type operator
arising from flow around a rotating body”, Manuscripta Math. 122, 419–437.

[7] Galdi, G. P. (2002), ”On the motion of a rigid body in a viscous liquid: A
mathematical analysis with applications”, in S. Friedlander, D. Serre (eds.):
Handbook of Mathematical Fluid Dynamics, vol. 1, North­Holland, Netherlands.

[8] Galdi, G. P. and Silvestre, A. L. (2007), ”The steady motion of a Navier­Stokes
liquid around a rigid body”, Arch. Rational Mech. Anal. 184, 371–400.

[9] Galdi, G.P., Simader, G. and Sohr, H. (1994), ”On the Stokes problem in Lipschitz
domain”, Ann. Mat. Pura Appl. CLXVII, 147–163.

[10] Grisvard, P. (2011), Elliptic Problems in Nonsmooth Domains, SIAM, Philadelphia.

[11] Heck, H., Kim, H. and Kozono, H. (2012), ”On the stationary Navier­Stokes around
a rotating body”, Manuscripta Math. 138, 315–345.

[12] Hishida, T. (2006), ”Lq estimates of weak solutions to the stationary Stokes equations
around a rotating body”, J. Math. Soc. Japan 58, 743–767.

[13] Kim D. (2018), ”Lq­estimates for the stationary Oseen equations on the exterior of
a rotating obstacle”, Math. Meth. Appl. Sci., 1–22.

[14] Kim, D. (2019), ”The energy equality and regularity results for the stationary
Navier­Stokes equations on the exterior of a rotating obstacle”, Nonlinear Anal.
181, 119–140.

[15] Kracmar, S., Necasová, Š. and Penel, P. (2010), ”Lp­approach of weak solutions to
stationary rotating Oseen equations in exterior domains”, Quarterly Appl. Math.
LXVIII, 421–437.

[16] Kracmar, S., Necasová, Š. and Penel, P. (2010), ”Anisotropic L2­estimates of weak
solutions to the stationary Oseen­type equations in 3D­exterior domain for rotating
body”, J. Math. Soc. Japan 62, 239–258.



Oseen System with Coriolis Term 41

[17] Kufner, A., John, O. and Fucik, S. (1977), Function Spaces, Academia, Prague.

[18] Kyed, M. (2013), ”Asymptotic profile of a linearized Navier­Stokes flow past a
rotating body”, Q. Appl. Math. 71, 489–500.

[19] Kyed, M. (2013), ”On a mapping property of the Oseen operator with rotation”,
Discrete Contin. Dyn. Syst. Ser. S 6, 1315–1322.

[20] Kyed, M. (2014), ”On the asymptotic structure of a Navier­Stokes flow past a
rotating body”, J. Math. Soc. Japan 66, 1–16.

[21] Maz’ya, V.G. and Poborchi, S. V. (1997), Differentiable Functions on Bad Domains,
World Scientific, Singapore.

[22] Medková, D. (2018), The Laplace equation, Springer, Cham.

[23] Medková, D. (2019), ”Weak solutions of the Robin problem for the Oseen system”,
J. Ellipt. Parabol. Equ. 5, 189–213.

[24] Medková, D., Ptashnyk, M. and Varnhorn, W. (2015), ”Integral representation of
the solution to a Stokes–Darcy problem”, Math. Methods Appl. Sci. 38, 3968–3979.

[25] Mitrea, I. and Mitrea, M. (2013), Multi­Layer Potentials and Boundary Problems
for Higher­Order Elliptic Systems in Lipschitz Domains, Springer, Berlin
Heidelberg.

[26] Mitrea, M. and Taylor, M. (2001), ”Navier­Stokes equations on Lipschitz domains
in Riemannian manifolds”, Math. Ann. 321, 955–987.

[27] Mitrea, M. and Wright, M.(2012), ”Boundary value problems for the Stokes system
in arbitrary Lipschitz domains”, Ast´erisque 344.

[28] Necasová, Š. and Kracmar, S. (2016), Navier­Stokes Flow Around a Rotating
Obstacle. Mathematical Analysis of its Asymptotic Behavior, Atlantis Press,
Amsterdam­Paris­Bejing.

[29] Tartar, L. (2007), An Introduction to Sobolev Spaces and Interpolation Spaces,
Springer, Berlin Heidelberg.




