Prediction of Sulfate Attack Products in Portland-Limestone Cements: The Effect of Cation Type and Concentration

Article Preview

Abstract:

Portland-limestone cement materials are susceptible to sulfate attack at low temperature and high humidity, because such conditions facilitate the formation of thaumasite, detriment to the structural integrity of calcium silicate hydrates (C─S─H). In this work, the effect of the cation associated with sulfates, concentration of sulfate solution, and limestone content in cement, were thermodynamically simulated. MgSO4 solution is of higher risk, degrading extensively the structural integrity of C─S─H. Although this phase is partially preserved under the effect of Na2SO4 and K2SO4 solutions, extensive expansion and thaumasite formation occur. The sulfate content of the corrosive solution and the limestone content in cement are the factors mostly intensifying the attack caused by MgSO4 and Na2SO4/K2SO4 solutions, respectively.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 325)

Pages:

28-33

Citation:

Online since:

October 2021

Export:

Price:

* - Corresponding Author

[1] UN Environment, K.L. Scrivener, V.M. John, E.M. Gartner, Eco-efficient cements: Potential economically viable solutions for a low-CO2 cement-based materials industry, Cem. Concr. Res. 114 (2018) 2-26.

DOI: 10.1016/j.cemconres.2018.03.015

Google Scholar

[2] EN 197-1, Cement – Part 1: Composition, specifications and conformity criteria for common cements, CEN/TC 51/WG 6, Brussels, (2011).

Google Scholar

[3] CSA 3000-08, Cementitious materials compendium, Mississauga, ON, Canada, (2008).

Google Scholar

[4] ASTM C595/C595M–12, Standard specification for blended hydraulic cements, West Conshohocken, PA, USA, (2012).

Google Scholar

[5] N. Crammond, The thaumasite form of sulfate attack in the UK, Cem. Concr. Compos. 25 (2003) 809-818.

DOI: 10.1016/s0958-9465(03)00106-9

Google Scholar

[6] EN 206, Concrete – Specification, performance, production and conformity, CEN/TC 104, Brussels, (2013).

Google Scholar

[7] CSA A3004-C8, Test method for determination of expansion of blended hydraulic cement mortar bars due to external sulphate attack, Mississauga, ON, Canada, (2010).

Google Scholar

[8] M. Whittaker, L. Black, Current knowledge of external sulfate attack, Adv. Cem. Res. 27 (2015) 532-545.

Google Scholar

[9] O.S.B Al-Amoudi, Attack on plain and blended cements exposed to aggressive sulfate environments, Cem. Concr. Compos. 24 (2002) 305-316.

DOI: 10.1016/s0958-9465(01)00082-8

Google Scholar

[10] M.E. Gaze, N.J. Crammond, The formation of thaumasite in a cement:lime:sand mortar exposed to cold magnesium and potassium sulfate solutions, Cem. Concr. Compos. 22 (2000) 209-222.

DOI: 10.1016/s0958-9465(00)00002-0

Google Scholar

[11] K. Sotiriadis, R. Mróz, Simulation of thaumasite sulfate attack on Portland cement mixtures using synthesized cement phases, J. Mater. Civil Eng. 31 (2019) 04018393.

DOI: 10.1061/(asce)mt.1943-5533.0002612

Google Scholar

[12] W. Kunther, B. Lothenbach, K.L. Scrivener, On the relevance of volume increase for the length changes of mortar bars in sulfate solutions, Cem. Concr. Res. 46 (2013) 23-29.

DOI: 10.1016/j.cemconres.2013.01.002

Google Scholar

[13] Ch. Xiong, L. Jiang, Z. Song, R. Liu, L. You, H. Chu, Influence of cation type on deterioration process of cement paste in sulfate environment, Constr. Build. Mater. 71 (2014) 158-166.

DOI: 10.1016/j.conbuildmat.2014.08.042

Google Scholar

[14] D.A. Kulik, T. Wagner, S.V. Dmytrieva, G. Kosakowski, F.F. Hingerl, K.V. Chudnenko, U.R. Berner, GEM-Selektor geochemical modeling package: Revised algorithm and GEMS3K numerical kernel for coupled simulation codes, Comput. Geosci. 17 (2013) 1-24.

DOI: 10.1007/s10596-012-9310-6

Google Scholar

[15] T. Wagner, D.A. Kulik, F.F. Hingerl, S.V. Dmytrieva, GEM-Selektor geochemical modeling package: TSolMod library and data interface for multicomponent phase models, Canad. Mineral. 50 (2012) 1173-1195.

DOI: 10.3749/canmin.50.5.1173

Google Scholar

[16] B. Lothenbach, D.A. Kulik, T. Matschei, M. Balonis, L. Baquerizo, B. Dilnesa, G.D. Miron, R.J. Myers, Cemdata 18: A chemical thermodynamic database for hydrated Portland cements and alkali-activated materials, Cem. Concr. Res. 115 (2019) 472-506.

DOI: 10.1016/j.cemconres.2018.04.018

Google Scholar