Determination of the Fire-Retardant Efficiency of Magnesite Thermal Insulating Materials to Protect Metal Structures from Fire

Article Preview

Abstract:

This paper presents the results of fire test of an I-beam protected by a combined magnesite plate-magnesite mixture heat-insulating material. It was shown that a composite with an average thickness of 37 mm maintained an average temperature of 380 °C on the metal surface after 150 minutes of fire exposure, not exceeding the critical value of 500 °C. From 60 to 100 minutes of fire testing (furnace temperature of 980-1025 °C), the temperature of the metal did not exceed 100 °C. This was achieved both due to the high thermal insulation properties of the magnesite mixture, and due to gas and vapor release from the hydration products of magnesia cement. The developed fire-retardant material provides the first group of fire-retardant efficiency (150 minutes) and, after the fire test, is characterized by density of 352.4 kg/m3 and compressive strength of 0.85 MPa, which is three times lower than the original.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1038)

Pages:

524-530

Citation:

Online since:

July 2021

Export:

Price:

* - Corresponding Author

[1] A. Kovalov, et al., Parameters of fire-retardant coatings of steel constructions under the influence of climatic factors. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 3 (2019) 46–53.

DOI: 10.29202/nvngu/2019-3/9

Google Scholar

[2] B. Pospelov, et al., A method for preventing the emergency resulting from fires in the premises through operative control over a gas medium, EEJET. 10–103 (2020) 6–13.

DOI: 10.15587/1729-4061.2020.194009

Google Scholar

[3] V. Andronov, B. Pospelov, E. Rybka, Development of a method to improve the performance speed of maximal fire detectors, EEJET. 2 9–86 (2017) 32–37.

DOI: 10.15587/1729-4061.2017.96694

Google Scholar

[4] Yu. Otrosh., O. Semkiv, E. Rybka, A. Kovalov, About need of calculations for the steel framework building in temperature influences conditions. IOP Conference Series: Materials Science and Engineering. 708 1 (2019).

DOI: 10.1088/1757-899x/708/1/012065

Google Scholar

[5] B. Pospelov, et al., Experimental study of the fluctuations of gas medium parameters as early signs of fire, EEJET. 1 10–91 (2018) 50–55.

DOI: 10.15587/1729-4061.2018.122419

Google Scholar

[6] A. Vasilchenko, et al., Feature of fire resistance calculation of steel structures with intumescent coating, MATEC Web of Conferences. 230 (2018).

DOI: 10.1051/matecconf/201823002036

Google Scholar

[7] S.G. Guzii, The ability to expand fire-retardant geo-cement coatings after artificial aging, J. StroyProfil. 2 (80) (2010) Part I 108-110.

Google Scholar

[8] S.G. Guzii, The ability to expand fire-retardant geo-cement coatings after artificial aging, J. StroyProfil. 3 (81) (2010) Part II 114-117.

Google Scholar

[9] V. Petránek, S. Guziy, K. Sotiriadis, L. Nevřivová, Study on the properties of geocement based thermal insulating materials for high temperature technical appliances, AMR. 734-737 (2013) 2356-2359.

DOI: 10.4028/www.scientific.net/amr.734-737.2356

Google Scholar

[10] O.M. Tropinov, V.E. Pukish, S.G. Guziy. Effective thermal insulators, J. Food and processing industry. 3 (235) (1999) 22-23.

Google Scholar

[11] V. Petranek, P. Krivenko, O. Petropavlovskiy, S. Guzii, Perlite concrete based on alkali activated cements, AMR. 897 (2014) 280-283.

DOI: 10.4028/www.scientific.net/amr.897.280

Google Scholar

[12] V. Petránek, S. Guzii, P. Kryvenko, K. Sotiriadis, A. Kravchenko, New thermal insulating material based on geocement, AMR. 838-841 (2014) 183-187.

DOI: 10.4028/www.scientific.net/amr.838-841.183

Google Scholar

[13] S.G. Guzii, В.Yа. Konstantinovskii, Use magnesia cements for reception heat insulating materials, Proc.10th Inter. Sci. Conf. VSU`, Sophia, Bulgaria, (2010) V-95-V-99.

Google Scholar

[14] S.G. Guziy, B.Ya. Konstantinovsky, Thermal insulation products based on magnesia cement. J. Construction tender. 45 (2010) 34-38.

Google Scholar

[15] V. Andronov, B. Pospelov, E. Rybka, Increase of accuracy of definition of temperature by sensors of fire alarms in real conditions of fire on objects, EEJET. 4 5–82 (2016) 38–44.

DOI: 10.15587/1729-4061.2016.75063

Google Scholar

[16] P. Krivenko, S. Guziy, H. Al-Musaedi, Atmospheric corrosion protection of metallic structures using geocements-based coatings. SSP. 227 (2015) 239-242.

DOI: 10.4028/www.scientific.net/ssp.227.239

Google Scholar

[17] S. Guzii, P. Krivenko, O. Bondarenko, T. Kopylova, Study on physico-mechanical properties of the modified alkaline aluminosilicate adhesive-bonded timber elements. SSP. 296 (2019) 112-117.

DOI: 10.4028/www.scientific.net/ssp.296.112

Google Scholar

[18] V. Schulze, V. Tischer, V.P. Ettel, Mortars and concrete on cementless binders, 1990, 240 p.

Google Scholar

[19] B. Pospelov, et al., Analysis of correlation dimensionality of the state of a gas medium at early ignition of materials, EEJET. 5 10 (2018) 25–30.

DOI: 10.15587/1729-4061.2018.142995

Google Scholar

[20] A. Viani, K. Sotiriadis, G. Lanzafame, L. Mancini, 3D microstructure of magnesium potassium phosphate ceramics from X-ray tomography: new insights into the reaction mechanisms, J. Mater. Sci. 54(5) (2019) 3748-3760.

DOI: 10.1007/s10853-018-3113-7

Google Scholar

[21] A. Viani, K. Sotiriadis, P. Šašek, M.-S. Appavou, Evolution of microstructure and performance in magnesium potassium phosphate ceramics: Role of sintering temperature of MgO, Ceram. Int. 42(2) (2016) 16310-16316.

DOI: 10.1016/j.ceramint.2016.07.182

Google Scholar