Stabilizing the Microstructure of Additively Manufactured Low-C Co-28Cr-6Mo Alloy

Article Preview

Abstract:

Co-28Cr-6Mo alloy is widely used in aerospace industry and biomaterial engineering where high demands are placed on material strength, fatigue endurance as well as corrosion resistance. As complex shapes and weight savings are required for such components, additive manufacturing is the ideal production way. For example, Selective Laser Melting (SLM) of metallic powders is capable of achieving complex components with fine details. However, Co-28Cr-6Mo alloy prepared by SLM shows a characteristic microstructure which causes its instability at elevated temperatures that can occur during operation. To eliminate such operational problem, the component must be appropriately heat-treated. This paper demonstrates the instability of Co-28Cr-6Mo alloy prepared by SLM and proposes the heat treatment yielding its stabilization.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 334)

Pages:

13-18

Citation:

Online since:

July 2022

Export:

Price:

* - Corresponding Author

[1] T.J. Fleming, A. Kavanagh, G. Duggan, B. O'Mahony, M. Higgens, The effect of induction heating power on the microstructural and physical properties of investment cast ASTM-F75 CoCrMo alloy, J.Mater. Res. Technol. 8 (2019) 4417-4424.

DOI: 10.1016/j.jmrt.2019.07.052

Google Scholar

[2] S.R. Mohamed, S.A.C. Ghani, W. Sawangsri, Mechanical properties of additive manufactured CoCrMo metabiomaterials for load bearing implants, Jurnal Tribologi 21 (2019) 93-107.

Google Scholar

[3] L. Tonelli, A. Fortunato, L. Ceschini, CoCr alloy processed by Selective Laser Melting (SLM): effect of Laser Energy Density on microstructure, surface morphology, and hardness, J. Manuf. Proces.52 (2020) 106-119.

DOI: 10.1016/j.jmapro.2020.01.052

Google Scholar

[4] J. Ciurana, L. Hernandez, J. Delgado, Energy density analysis on single tracks formed by selective laser melting with CoCrMo powder material, Int. J. Adv. Manuf. Technol. 68 (2013) 1103-1110.

DOI: 10.1007/s00170-013-4902-4

Google Scholar

[5] B. Qian, K. Saeidi, L. Kvetková, F. Lofaj, C. Xiao, Z. Shen, Defects-tolerant Co-Cr-Mo dental alloys prepared by selective laser melting, Dental Mater. 31 (2015) 1435-1444.

DOI: 10.1016/j.dental.2015.09.003

Google Scholar

[6] T.P.D Jevremovic, B. Kosec, Đ. Vukelic, I. Budak, S. Aleksandrovic, D. Egbeer, R. Williams The analysis of the mechanical properties of F75 Co–Cr alloy for use in selective laser melting (SLM) manufacturing of removable partial dentures (RPD), Metalurgija 51 (2012) 171-174.

Google Scholar

[7] G.D. Janaki Ram, C.K. Esplin, B.E. Stucker, Microstructure and wear properties of LENS® deposited medical grade CoCrMo, J. Mater. Sci.: Mater. Med. 19 (2008) 2105-2111.

DOI: 10.1007/s10856-007-3078-6

Google Scholar

[8] K.M. Mantrala, M. Das, V.K. Balla, C.S. Rao, V.V.S. Kesava Rao, Additive Manufacturing of Co-Cr-Mo Alloy: Influence of Heat Treatment on Microstructure, Tribological, and Electrochemical Properties, Front. Mech. Eng. 1 (2015).

DOI: 10.3389/fmech.2015.00002

Google Scholar

[9] H. Li, M. Wang, D. Lou, W. Xia, X. Fang, Microstructural features of biomedical cobalt–chromium–molybdenum (CoCrMo) alloy from powder bed fusion to aging heat treatment, J. Mater. Sci. Technol. 45 (2020) 146-156.

DOI: 10.1016/j.jmst.2019.11.031

Google Scholar

[10] Y. Kajima, A. Takaichi, N. Kittikundecha, T. Nakamoto, T. Kimura, N. Nomura, A. Kawasaki, T. Hanawa, H. Takahashi, N. Wakabayashi, Effect of heat-treatment temperature on microstructures and mechanical properties of Co–Cr–Mo alloys fabricated by selective laser melting, Mater. Sci. Eng. A 726 (2018) 21-31.

DOI: 10.1016/j.msea.2018.04.048

Google Scholar

[11] M. Roudnická, O. Molnárová, J. Drahokoupil, J. Kubásek, J. Bigas, V. Šreibr, D. Paloušek, D. Vojtěch, Microstructural instability of L-PBF Co-28Cr-6Mo alloy at elevated temperatures, Additive Manuf. 44 (2021) 102025.

DOI: 10.1016/j.addma.2021.102025

Google Scholar

[12] C.Y. Yap, C.K. Chua, Z.L. Dong, Z.H. Liu, D.Q. Zhang, L.E. Loh, S.L. Sing, Review of selective laser melting: Materials and applications, Appl. Phys. Rev. 2 (2015).

Google Scholar

[13] K.G. Prashanth, J. Eckert, Formation of metastable cellular microstructures in selective laser melted alloys, J. Alloys Compd. 707 (2017) 27-34.

DOI: 10.1016/j.jallcom.2016.12.209

Google Scholar

[14] M. Zhang, Y. Yang, C. Song, Y. Bai, Z. Xiao, An investigation into the aging behavior of CoCrMo alloys fabricated by selective laser melting, J. Alloys Compd. 750 (2018) 878-886.

DOI: 10.1016/j.jallcom.2018.04.054

Google Scholar

[15] M. Béreš, C.C. Silva, P.W.C. Sarvezuk, L. Wu, L.H.M. Antunes, A.L. Jardini, A.L.M. Feitosa, J. Žilková, H.F.G. de Abreu, R.M. Filho, Mechanical and phase transformation behaviour of biomedical Co-Cr-Mo alloy fabricated by direct metal laser sintering, Mater. Sci. Eng. A 714 (2018) 36-42.

DOI: 10.1016/j.msea.2017.12.087

Google Scholar

[16] S. Kurosu, H. Matsumoto, A. Chiba, Isothermal Phase Transformation in Biomedical Co-29Cr-6Mo Alloy without Addition of Carbon or Nitrogen, Metall. Mater.Trans. A 41 (2010) 2613-2625.

DOI: 10.1007/s11661-010-0273-8

Google Scholar

[17] B.T. Donkor, J. Song, Y. Fu, M. Kattoura, S.R. Mannava, M.A. Steiner, V.K. Vasudevan, Accelerated γ-face-centered cubic to ε-hexagonal close packed massive transformation in a laser powder bed fusion additively manufactured Co-29Cr-5Mo alloy, Scripta Mater. 179 (2020) 65-69.

DOI: 10.1016/j.scriptamat.2020.01.012

Google Scholar

[18] A.d.J. Saldívar García, A.M. Medrano, A.S. Rodríguez, Formation of hcp martensite during the isothermal aging of an fcc Co-27Cr-5Mo-0.05C orthopedic implant alloy, Metall. Mater. Trans. A 30 (1999) 1177-1184.

DOI: 10.1007/s11661-999-0267-6

Google Scholar

[19] M. Roudnická, J. Kubásek, L. Pantělejev, O. Molnárová, J. Bigas, J. Drahokoupil, D. Paloušek, D. Vojtěch, Heat treatment of laser powder-bed-fused Co-28Cr-6Mo alloy to remove its microstructural instability by massive FCC→HCP transformation, Additive Manuf. 47 (2021) 102265.

DOI: 10.1016/j.addma.2021.102265

Google Scholar