Fire-Resistant Coatings, Obtained by Layer-by-Layer Assembly, in the System of Silicic Acid Gel – Diammonium Hydrogen Phosphate – Urea

Article Preview

Abstract:

The paper discusses the influence of flame retardant compositions obtained in the system of silicic acid sol (SiO2 sol) – flame retardants on the fire retardant properties of thin dense cotton fabrics and low density voluminous tapestry fabrics. The need to develop the optimal composition of a fire-retardant composition for a specific fabric, or to unify it for two main groups of fabric: thin and bulky low-density ones, is substantiated. Experimental coatings were obtained by applying SiO2 sol, which was obtained by the reaction between liquid glass and acetic acid, followed by application of flame retardant solutions (diammonium hydrogen phosphate (DAHP) and urea) by spraying or by the bath method. As a result of the optimization, using the central composite uniform rotatable plan of the second order, it was established that the main effect of the flame retardant is exerted by diammonium hydrogen phosphate (DAHP). The content or concentration of urea depends on the concentration of DAHP used: if diluted DAHP solutions (9–10 %) are used, trace amounts of urea (0–0.5 %) must be added. In the case of using a concentrated DAHP solution (18–20 %), the concentration of the urea solution should also be increased to 8–10 %.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

157-165

Citation:

Online since:

August 2023

Export:

Price:

* - Corresponding Author

[1] P.J. Wakelyn, Environmentally friendly flame resistant textiles, Advances in Fire Retardant Materials Woodhead Publishing Series in Textiles, (2008) 188–212.

DOI: 10.1533/9781845694701.1.188

Google Scholar

[2] C.K. Kundu, L. Song, Y.Hu, Chitosan-metal oxide nanoparticle hybrids in developing bi-functional polyamide 66 textiles with enhanced flame retardancy and wettability, Applied Surface Science Advances, 7 (2022) 100202.

DOI: 10.1016/j.apsadv.2021.100202

Google Scholar

[3] J. Alongi, M. Ciobanu, G. Malucelli, Cotton fabrics treated with hybrid organic–inorganic coatings obtained through dual-cure processes, Cellulose, 18 (2011) 1335–1348.

DOI: 10.1007/s10570-011-9564-5

Google Scholar

[4] J. Alongi, M. Ciobanu, G. Malucelli, Novel flame retardant finishing systems for cotton fabrics based on phosphorus-containing compounds and silica derived from sol–gel processes, Carbohydrate Polymers, 85(3) (2011) 599–608.

DOI: 10.1016/j.carbpol.2011.03.024

Google Scholar

[5] J. Alongi, M. Ciobanu, F. Carosio, J. Tata, G. Malucelli, Thermal stability and flame retardancy of polyester, cotton and relative blend textile fabrics treated by sol–gel process, Journal of Applied Polymer Science, 119(4) (2011) 1961–1969.

DOI: 10.1002/app.32954

Google Scholar

[6] K. Halasz, G. Grozdits, L. Csóka, Functional nanostructured coatings via layer-by-layer self-assembly, Anti-Abrasive Nanocoatings Current and Future Applications, (2015) 249–281.

DOI: 10.1016/b978-0-85709-211-3.00010-8

Google Scholar

[7] N. Forsman, A. Lozhechnikova, A. Khakalo, L.-S. Johansson, J. Vartiainen, M. Österberg, Layer-by-layer assembled hydrophobic coatings for cellulose nanofibril films and textiles, made of polylysine and natural wax particles, Carbohydrate Polymers, 173 (2017) 392–402.

DOI: 10.1016/j.carbpol.2017.06.007

Google Scholar

[8] J. Alongi, M. Ciobanu, G. Malucelli, Sol–gel treatments for enhancing fire stability of cotton fabrics: optimization of the process and evaluation of durability, Cellulose, 18(1) (2011) 167–177.

DOI: 10.1007/s10570-010-9470-2

Google Scholar

[9] C-L. Chiang, R-C. Chang, Synthesis, characterization and properties of novel self-extinguishing organic–inorganic nanocomposites containing nitrogen, silicon and phosphorus via sol–gel method, Composites Science and Technology, 68(14) (2008) 2849–2857.

DOI: 10.1016/j.compscitech.2007.10.017

Google Scholar

[10] O. Skorodumova, O. Tarakhno, O. Chebotaryova, Improving the Fire-Retardant Properties of Cotton-Containing Textile Materials through the Use of Organo-Inorganic SiO2 Sols, Key Engineering Materials, 927 (2022) 63–68.

DOI: 10.4028/p-jbv49r

Google Scholar

[11] J. Wang, J. He, L. Ma, Y. Zhang, L.Shen, S. Xiong, K. Li, M. Qu, Multifunctional conductive cellulose fabric with flexibility, superamphiphobicity and flame-retardancy for all-weather wearable smart electronic textiles and high-temperature warning device, Chemical Engineering Journal, 390 (2020) 124508.

DOI: 10.1016/j.cej.2020.124508

Google Scholar

[12] Z. Jiang, C. Wang, S. Fang, P. Ji, H. Wang, C. Ji, Durable flame-retardant and antidroplet finishing of polyester fabrics with flexible polysiloxane and phytic acid through layer-by-layer assembly and sol-gel process, Journal of Applied Polymer Science, 135 (2018) 46414.

DOI: 10.1002/app.46414

Google Scholar

[13] F. Carosio, J. Alongi, Influence of layer by layer coatings containing octapropylammonium polyhedral oligomericsilsesquioxane and ammonium polyphosphate on the thermal stability and flammability of acrylic fabrics, Journal of Analytical and Applied Pyrolysis, 119 (2016) 114–123.

DOI: 10.1016/j.jaap.2016.03.010

Google Scholar

[14] K. Apaydin, A. Laachachi, V. Ball, M. Jimenez, S. Bourbigot, V. Toniazzo, D. Ruch, Intumescent coating of (polyallylamine-polyphosphates) deposited on polyamide fabrics via layer-by-layer technique, Polymer Degradation and Stability, 106 (2014) 158–164.

DOI: 10.1016/j.polymdegradstab.2014.01.006

Google Scholar

[15] B. Pospelov, V. Andronov, E. Rybka, O. Krainiukov, N. Maksymenko, R. Meleshchenko, Y. Bezuhla, I. Hrachova, R. Nesterenko, A. Shumilova, Mathematical model of determining a risk to the human health along with the detection of hazardous states of urban atmosphere pollution based on measuring the current concentrations of pollutants, Eastern-European Journal of Enterprise Technologies, 4(10) (2020) 37–44.

DOI: 10.15587/1729-4061.2020.210059

Google Scholar

[16] V. Loboichenko, V. Strelec, The natural waters and aqueous solutions express-identification as element of determination of possible emergency situation, Water and Energy International, 61(9) (2018) 43–50.

Google Scholar

[17] A. Vasenko, O. Rybalova, O. Kozlovskaya, A study of significant factors affecting the quality of water in the Oskil River (Ukraine), Eastern-European Journal of Enterprise Technologies, 3/10 (81) (2016) 48–55.

DOI: 10.15587/1729-4061.2016.72415

Google Scholar

[18] C.K. Kundu, C. Sekhar, R. Gangireddy, L. Song, Y. Hu, Flame retardant treatments for polyamide 66 textiles: Analysis the Role of Phosphorus compounds, Polymer Degradation and Stability, 182 (2020) 109376.

DOI: 10.1016/j.polymdegradstab.2020.109376

Google Scholar

[19] J-W. Kim, T. Isobe, M. Muto, N. M. Tue, K. Ktsura, G. Malarvannan, A. Sudaryanto, K-H. Chang, M. Prudente, P. H. Viet, S. Takahashi, S. Tanabe, Organophosphorus flame retardants (PFRs) in human breast milk from several Asian countries, Chemosphere, 116 (2014) 91–97.

DOI: 10.1016/j.chemosphere.2014.02.033

Google Scholar

[20] S. Vambol, V. Vambol, Y. Suchikova, N. Deyneko, Analysis of the ways to provide ecological safety for the products of nanotechnologies throughout their life cycle, Eastern-European Journal of Enterprise Technologies, 1/10 (85) (2017) 27–36.

DOI: 10.15587/1729-4061.2017.85847

Google Scholar

[21] V. Andronov, B. Pospelov, E. Rybka, Development of a method to improve the performance speed of maximal fire detectors, Eastern-European Journal of Enterprise Technologies, 2/9 (86) (2017) 32–37.

DOI: 10.15587/1729-4061.2017.96694

Google Scholar

[22] D. Dubinin, V. Avetisyan, K. Ostapov, S. Shevchenko, S. Hovalenkov, D. Beliuchenko, A. Maksymov, O. Cherkashyn, Investigation of the effect of carbon monoxide on people in case of fire in a building | Ispitivanje djelovanja ugljičnog monoksida na ljude u slučaju požara u zgradi, Sigurnost, 62 (4) (2020) 347– 357.

DOI: 10.31306/s.62.4.2

Google Scholar

[23] B. Pospelov, E. Rybka, R. Meleshchenko, O. Krainiukov, S. Harbuz, Yu. Bezuhla, I. Morozov, A. Kuruch, O. Saliyenko, R. Vasylchenko, Use of uncertainty function for identification of hazardous states of atmospheric pollution vector, Eastern-European Journal of Enterprise, 2/10 (104) (2020) 6–12.

DOI: 10.15587/1729-4061.2020.200140

Google Scholar

[24] V. Sadkovyi, B. Pospelov, V. Andronov, E. Rybka, O. Krainiukov, А. Rud, K. Karpets, Yu. Bezuhla, Construction of a method for detecting arbitrary hazard pollutants in the atmospheric air based on the structural function of the current pollutant concentrations, Eastern-European Journal of Enterprise, 6/10 (108) (2020) 14–22.

DOI: 10.15587/1729-4061.2020.218714

Google Scholar

[25] O. Rybalova, S. Artemiev, M. Sarapina, B. Tsymbal, A. Bakhareva, O. Shestopalov, O. Filenko, Development of methods for estimating the environmental risk of degradation of the surface water state, Eastern-European Journal of Enterprise Technologies, 2/10 (92) (2018) 4–17.

DOI: 10.15587/1729-4061.2018.127829

Google Scholar

[26] V. Loboichenko, A. Vasyukov, T. Tishakova Investigations of Mineralization of Water Bodies on the Example of River Waters of Ukraine, Asian Journal of Water, Environment and Pollution, 14(4) (2017) 37–41.

DOI: 10.3233/ajw-170035

Google Scholar

[27] Y. Hapon, M. Chyrkina, D. Tregubov, O. Romanova, Co-Мo-W galvanochemical alloy application as cathode material in the industrial wastewater treatment processes, Materials Science Forum, 1038 (2021) 251–257.

DOI: 10.4028/www.scientific.net/msf.1038.251

Google Scholar

[28] Y. Danchenko, V. Andronov, E. Barabash, T. Obigenko, E. Rybka, R. Meleshchenko, A. Romin, Research of the intramolecular interactions and structure in epoxyamine composites with dispersed oxides, Eastern-European Journal of Enterprise Technologies, 6/12 (90) (2017) 4–12.

DOI: 10.15587/1729-4061.2017.118565

Google Scholar

[29] B. Pospelov, V. Andronov, E. Rybka, O. Krainiukov, K. Karpets, O. Pirohov, I. Semenyshyna, R. Kapitan, A. Promska, O. Horbov, Development of the correlation method for operative detection of recurrent states, Eastern-European Journal of Enterprise, 6/4 (102) (2019) 39–46.

DOI: 10.15587/1729-4061.2019.187252

Google Scholar

[30] B. Pospelov, V. Andronov, E. Rybka, M. Samoilov, O. Krainiukov, I. Biryukov, T. Butenko, Yu. Bezuhla, K. Karpets, E. Kochanov, Development of the method of operational forecasting of fire in the premises of objects under real conditions, Eastern-European Journal of Enterprise, 2/10 (110) (2021) 43–50.

DOI: 10.15587/1729-4061.2021.226692

Google Scholar

[31] A. Chernukha, A. Chernukha, K. Ostapov, T. Kurska, Investigation of the processes of formation of a fire retardant coating, Materials Science Forum, 1038 (2021) 480–485.

DOI: 10.4028/www.scientific.net/msf.1038.480

Google Scholar

[32] O. Skorodumova, O. Tarakhno, O. Chebotaryova, O. Bezuglov, F. M. Emen, The use of sol-gel method for obtaining fire-resistant elastic coatings on cotton fabrics, Materials Science Forum, 1038 (2021) 468–479.

DOI: 10.4028/www.scientific.net/msf.1038.468

Google Scholar

[33] A. Chernukha, A. Teslenko, P. Kovaliov, O. Bezuglov, Mathematical Modeling of Fire-Proof Efficiency of Coatings Based on Silicate Composition, Materials Science Forum, 1006 (2020) 70–75.

DOI: 10.4028/www.scientific.net/msf.1006.70

Google Scholar

[34] O. Skorodumova, O. Tarakhno, O. Chebotaryova, Y. Hapon, F. M. Emen, Formation of fire retardant properties in elastic silica coatings for textile materials, Materials Science Forum, 1006 (2020) 25–31.

DOI: 10.4028/www.scientific.net/msf.1006.25

Google Scholar

[35] A. Sharshanov, O. Tarakhno, A. M. Babayev, O. Skorodumova, Mathematical Modeling of the Protective Effect of Ethyl Silicate Gel Coating on Textile Materials under Conditions of Constant or Dynamic Thermal Exposure, Key Engineering Materials, 927 (2022) 77–86.

DOI: 10.4028/p-8t33rc

Google Scholar