biologia plantarum

International journal on Plant Life established by Bohumil Nìmec in 1959

Biologia plantarum 67:150-158, 2023 | DOI: 10.32615/bp.2023.021

Comparative single nucleotide polymorphism analysis of maize Iodent and BSSS germplasms

T.M. Satarova1, 4, *, V.Yu. Cherchel1, B.V. Dziubetskyi1, V.V. Semenova1, 2, O.F. Stasiv3, P. Soudek4
1 State Enterprise Institute of Grain Crops of National Academy of Agrarian Sciences of Ukraine, Dnipro, 49009, Ukraine
2 SPFE Company "Mais", Synelnykove, Dnipropetrovsk region, 52500, Ukraine
3 Institute of Agriculture in the Carpathian Region of National Academy of Agrarian Sciences of Ukraine, Oboroshyne, Lviv Region, 81115, Ukraine
4 Institute of Experimental Botany of the Czech Academy of Sciences, Prague, CZ-16502, Czech Republic

The analysis of single nucleotide polymorphisms of 107 maize inbreds was performed on 384 special single nucleotide polymorphism (SNP) markers to receive their unique certificates and determine their degrees of affinity and heterotic potential. All inbreds were selected in the steppe zone of Ukraine; among them, 39 inbreds belonged to the Iodent and 28 inbreds to the BSSS germplasms. 40 inbreds of the Iodent/BSSS breeding group developed after hybridization of Iodent and BSSS, were also analysed by the same SNP markers. The average homozygosity of lines amounted to 98.05%, and the genetic diversity was 0.1746. According to pairwise SNP distances, lines of the Iodent and BSSS pedigrees formed two separate clusters, while the Iodent/BSSS lines were distributed among them. The allelic patterns of SNP markers specific for Iodent and BSSS inbred lines in comparison with each other and with the original inbreds P165, B14, B37, and B73 were formulated and discussed. Inbreds within the Iodent germplasm were on average much more closely related (GD = 0.2494) than those within the BSSS germplasm (GD = 0.3900) and the Iodent/BSSS breeding group (GD = 0.3967). The potential of the heterotic model Iodent×BSSS was assessed as high (mean GD = 0.4509). Based on SNP distances, inbreds have been recommended for the development of single cross heterotic hybrids, sister hybrids, and initial populations for subsequent breeding cycles.

Keywords: genetic distances, heterosis, molecular markers, single nucleotide polymorphism, Zea mays.

Received: August 11, 2022; Revised: April 4, 2023; Accepted: May 12, 2023; Published online: June 28, 2023  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Satarova, T.M., Cherchel, V.Y., Dziubetskyi, B.V., Semenova, V.V., Stasiv, O.F., & Soudek, P. (2023). Comparative single nucleotide polymorphism analysis of maize Iodent and BSSS germplasms. Biologia plantarum67, Article 150-158. https://doi.org/10.32615/bp.2023.021
Download citation

Supplementary files

Download file6937_Satarova_Suppl.pdf

File size: 406.96 kB

References

  1. Adu G.B., Badu-Apraku B., Akromah R. et al.: Genetic diversity and population structure of early-maturing tropical maize inbred lines using SNP markers. - PLoS ONE 14: e0214810, 2019. Go to original source...
  2. Alseekh S., Kostova D., Bulut M., Fernie A.R.: Genome-wide association studies: assessing trait characteristics in model and crop plants. - Cell Mol. Life Sci. 78: 5743-5754, 2021. Go to original source...
  3. Arca M., Mary-Huard T., Gouesnard B. et al.: Deciphering the genetic diversity of landraces with high-throughput SNP genotyping of DNA bulks: methodology and application to the maize 50k array. - Front. Plant Sci. 11: 568699, 2021. Go to original source...
  4. Armstrong C.L., Parker G.B., Pershing J.C. et al.: Field evaluation of European corn borer control in progeny of 173 transgenic corn events expressing an insecticidal protein from Bacillus thuringiensis. - Crop Sci. 35: 550-557, 1995. Go to original source...
  5. Aubry S.: The future of digital sequence information for plant genetic resources for food and agriculture. - Front. Plant Sci. 10: 1046, 2019. Go to original source...
  6. Auinger H.-J., Lehermeier C., Gianola D. et al.: Calibration and validation of predicted genomic breeding values in an advanced cycle maize population. - Theor. Appl. Genet. 134: 3069-3081, 2021. Go to original source...
  7. Badu-Apraku B., Garcia-Oliveira A.L., Petroli C.D. et al.: Genetic diversity and population structure of early and extra-early maturing maize germplasm adapted to sub-Saharan Africa. - BMC Plant Biol. 21: 96, 2021. Go to original source...
  8. Barata C., Carena M.J.: Classification of North Dakota maize inbred lines into heterotic groups based on molecular and testcross data. - Euphytica 151: 339-349, 2006. Go to original source...
  9. Beckett T.J., Morales A.J., Koehler K.L., Rocheford T.R.: Genetic relatedness of previously Plant-Variety-Protected commercial maize inbreds. - PLoS ONE 12: e0189277, 2017. Go to original source...
  10. Botstein D., White R.L., Skolnick M., Davis R.W.: Construction of genetic linkage map in man using restriction fragment length polymorphisms. - Am. J. Hum. Genet. 32: 314-331, 1980.
  11. Bradbury P.J., Zhang Z., Kroon D.E. et al.: TASSEL: software for association mapping of complex traits in diverse samples. - Bioinformatics 23: 2633-2635, 2007. Go to original source...
  12. Buckler E.S., Gaut B.S., McMullen M.D.: Molecular and functional diversity of maize. - Curr. Opin. Plant Biol. 9: 172-176, 2006. Go to original source...
  13. Chen Z., Tang D., Ni J. et al.: Development of genic KASP SNP markers from RNA-Seq data for map-based cloning and marker-assisted selection in maize. - BMC Plant Biol. 21: 157, 2021. Go to original source...
  14. Cherchel V.Yu., Dziubetskyi B.V., Satarova T.M. et al.: [Initial material of Lancaster germplasm in maize selection and biotechnology.] Pp. 352. Agrarna nauka, Kyiv 2020. [In Ukrainian]
  15. Ching A., Caldwell K.S., Jung M. et al.: SNP frequency, haplotype structure and linkage disequilibrium in elite maize inbred lines. - BMC Genet. 3: 19, 2002. Go to original source...
  16. de Faria S.V., Zuffo L.T., Rezende W.M. et al.: Phenotypic and molecular characterization of a set of tropical maize inbred lines from a public breeding program in Brazil. - BMC Genomics 23: 54, 2022. Go to original source...
  17. Derkach K.V., Satarova T.M., Borysova V.V. et al.: [Grouping and clustering of maize Lancaster germplasm inbreds according to the results of SNP-analysis.] - Regul. Mech. Biosyst. 8: 343-348, 2017b. [In Ukrainian] Go to original source...
  18. Derkach K.V., Satarova T.M., Borisova V.V., Cherchel V.Yu.: [The allelic state of SNP-markers specific for Lancaster germplasm maize inbreds.] - Bull. Ukr. Soc. Genet. Breed. 15: 32-39, 2017a. [In Ukrainian] Go to original source...
  19. Fan J.-B., Gunderson K.L., Bibikova M. et al.: Illumina universal bead arrays. - Method. Enzymol. 410: 57-73, 2006. Go to original source...
  20. Ganal M.W., Durstewitz G., Polley A. et al.: A large maize (Zea mays L.) SNP genotyping array: development and germplasm genotyping, and genetic mapping to compare with the B73 reference genome. - PLoS ONE 6: e28334, 2011. Go to original source...
  21. Gerke J.P., Edwards J.W., Guill K.E. et al.: The genomic impacts of drift and selection for hybrid performance in maize. - Genetics 201: 1201-1211, 2015. Go to original source...
  22. Gore M.A., Chia J.-M., Elshire R.J. et al.: A first-generation haplotype map of maize. - Science 326: 1115-1117, 2009. Go to original source...
  23. Hasan N., Choudhary S., Naaz N. et al.: Recent advancements in molecular marker-assisted selection and applications in plant breeding programmes. - J. Genet. Eng. Biotechnol. 19: 128, 2021. Go to original source...
  24. ISO/TR 17623:2015, Molecular biomarker analysis - SSR analysis of maize. Pp. 6. Geneva, 2015. Available at: https://www.iso.org/standard/60171.html.
  25. Josia C., Mashingaidze K., Amelework A.B. et al.: SNP-based assessment of genetic purity and diversity in maize hybrid breeding. - PLoS ONE 16: e0249505, 2021. Go to original source...
  26. Kumar B., Rakshit S., Kumar S. et al.: Genetic diversity, population structure and linkage disequilibrium analyses in tropical maize using genotyping by sequencing. - Plants-Basel 11: 799, 2022. Go to original source...
  27. Lu Y., Yan J., Guimarães C.T. et al.: Molecular characterization of global maize breeding germplasm based on genome-wide single nucleotide polymorphisms. - Theor. Appl. Genet. 120: 93-115, 2009. Go to original source...
  28. Murray M.G., Thompson W.F.: Rapid isolation of high molecular weight plant DNA. - Nucleic Acids Res. 8: 4321-4326, 1980. Go to original source...
  29. Pea G., Aung H.H., Frascaroli E. et al.: Extensive genomic characterization of a set of near-isogenic lines for heterotic QTL in maize (Zea mays L.). - BMC Genomics 14: 61, 2013. Go to original source...
  30. Qiu Y., O'Connor C.H., Della Coletta R. et al.: Whole-genome variation of transposable element insertions in a maize diversity panel. - G3-Genes Genom. Genet. 11: jkab238, 2021. Go to original source...
  31. Qu J., Liu J.: A genome-wide analysis of simple sequence repeats in maize and the development of polymorphism markers from next-generation sequence data. - BMC Res. Notes 6: 403, 2013. Go to original source...
  32. Ranum P., Peña-Rosas J.P., Garcia-Casal M.N.: Global maize production, utilization, and consumption. - Ann. N. Y. Acad. Sci. 1312: 105-112, 2014. Go to original source...
  33. Rehman A.U., Dang T., Qamar S. et al.: Revisiting plant heterosis - from field scale to molecules. - Genes 12: 1688, 2021. Go to original source...
  34. Schnable P.S., Ware D., Fulton R.S. et al.: The B73 maize genome: complexity, diversity, and dynamics. - Science 326: 1112-1115, 2009. Go to original source...
  35. Syvänen A.-C.: Accessing genetic variation: genotyping single nucleotide polymorphisms. - Nat. Rev. Genet. 2: 930-942, 2001. Go to original source...
  36. Tomkowiak A., Bocianowski J., Kwiatek M., Kowalczewski P.£.: Dependence of the heterosis effect on genetic distance, determined using various molecular markers. - Open Life Sci. 15: 1-11, 2020. Go to original source...
  37. Tomkowiak A., Bocianowski J., Radzikowska, D., Kowalczewski P.£.: Selection of parental material to maximize heterosis using SNP and SilicoDarT markers in maize. - Plants-Basel 8: 349, 2019. Go to original source...
  38. Troyer F.: Temperate corn - background, behaviour and breeding. - In: Hallauer A.R. (ed.): Specialty Corn. Second Edition. Pp. 74. CRC Press, Boca Raton-London-New York-Washington 2000. Go to original source...
  39. Venkatramana P., Carlson C., Blackstad M. et al.: Development and characterization of single nucleotide polymorphism (SNP) panel for marker assisted backcrossing in corn. - Seed Technol. 32: 153, 2010.
  40. Wu X., Li Y., Fu J. et al.: Exploring identity-by-descent segments and putative functions using different foundation parents in maize. - PLoS ONE 11: e0168374, 2016. Go to original source...
  41. Xiao Y., Jiang S., Cheng Q. et al.: The genetic mechanism of heterosis utilization in maize improvement. - Genome Biol. 22: 148, 2021. Go to original source...
  42. Xu C., Ren Y., Jian Y. et al.: Development of a maize 55 K SNP array with improved genome coverage for molecular breeding. - Mol. Breeding 37: 20, 2017. Go to original source...
  43. Yan Y., Sun S., Xing R. et al.: Identifying parameters for defining "essentially derived varieties" of maize inbred lines using high-throughput genome-wide SNP markers. - Plants-Basel 11: 1909, 2022. Go to original source...
  44. Zhang X., Zhang H., Li L. et al.: Characterizing the population structure and genetic diversity of maize breeding germplasm in Southwest China using genome-wide SNP markers. - BMC Genomics 17: 697, 2016. Go to original source...