Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter April 2, 2020

Smamite, Ca2Sb(OH)4[H(AsO4)2]·6H2O, a new mineral and a possible sink for Sb during weathering of fahlore

  • Jakub Plášil ORCID logo EMAIL logo , Anthony R. Kampf , Nicolas Meisser , Cédric Lheur , Thierry Brunsperger and Radek Škoda ORCID logo
From the journal American Mineralogist

Abstract

Smamite, Ca2Sb(OH)4[H(AsO4)2]·6H2O, is a new mineral species from the Giftgrube mine, Rauenthal, Sainte-Marie-Aux-Mines ore-district, Haut-Rhin department, France. It is a supergene mineral found in quartz-carbonate gangue with disseminated to massive tennantite-tetrahedrite series minerals, native arsenic, Ni-Co arsenides, and supergene minerals picropharmacolite, fluckite, and pharmacolite. Smamite occurs as lenticular crystals growing in aggregates up to 0.5 mm across. The new mineral is whitish to colorless, transparent with vitreous luster and white streak; non-fluorescent under UV radiation. The Mohs hardness is ~3½; the tenacity is brittle, the fracture is curved, and there is no apparent cleavage. The measured density is 2.72(3) g/cm3; the calculated density is 2.709 g/cm3 for the ideal formula. The mineral is insoluble in H2O and quickly soluble in dilute (10%) HCl at room temperature. Optically, smamite is biaxial (–), α = 1.556(1), β = 1.581(1), γ = 1.588(1) (white light). The 2V (meas) = 54(1)°; 2V (calc) = 55.1°. The dispersion is weak, r > v. Smamite is non-pleochroic. Electron microprobe analyses provided the empirical formula Ca2.03Sb0.97(OH)4[H1.10(As1.99Si0.01O4)2]·6H2O. Smamite is triclinic, P1¯, a = 5.8207(4), b = 8.0959(6), c = 8.21296(6) Å, α = 95.8343(7)°, β = 110.762(8)°, γ = 104.012(7)°, V = 402.57(5) Å3, and Z = 1. The structure (Robs = 0.027 for 1518 I >3σI reflections) is based upon {Ca2(H2O)6Sb(OH)4[H(AsO4)2]} infinite chains consisting of edge-sharing dimers of Ca(H2O)3O2(OH)2 polyhedra that share edges with Sb(OH)4O2 octahedra; adjacent chains are linked by H-bonds, including one strong, symmetrical H-bond with an O–H bond-length of ~1.23 Å. The name “smamite” is based on the acronym of the Sainte-Marie-aux-Mines district.

Acknowledgments

William Perraud is acknowledged for providing us with the microphotography of smamite. Comments by Juraj Majzlan and an anonymous reviewer, as well as the techincial structures editor, helped in improving the manuscript.

  1. Funding

    This study was funded, in part, by the John Jago Trelawney Endowment to the Mineral Sciences Department of the Natural History Museum of Los Angeles County and by the Czech Science Foundation (GACR 17-09161S) to J.P.

References cited

Bari, H., Permingeat, F., Pierrot, R., and Walenta, K. (1980a) La ferrarisite, Ca5H2(AsO44×9H2O, une nouvelle espèce minérale isomorphe de la guérinite. Bulletin de la Societé Française de Minéral et de Cristallographie, 103, 533–540.10.3406/bulmi.1980.7417Search in Google Scholar

Bari, H., Cesbron, F., Permingeat, F., and Pillard, F. (1980b) La fluckite, arséniate hydraté de calcium et manganèse, CaMnH2(AsO42×2H2O, une nouvelle espèce minérale. Bulletin de la Societé Française de Minéral et de Cristallographie, 103, 122–128.10.3406/bulmi.1980.7384Search in Google Scholar

Bari, H., Catti, M., Ferraris, G., Ivaldi, G., and Permingeat, F. (1982) Phaunouxite, Ca3(AsO42×11H2O, a new mineral strictly associated with rauenthalite. Bulletin de la Societé Française de Minéral et de Cristallographie, 105, 327–332.Search in Google Scholar

Borčinová Radková, A., Jamieson, H., Lalinská-Voleková, B., Majzlan, J., Števko, M., and Chovan, M. (2017) Mineralogical controls on antimony and arsenic mobility during tetrahedrite-tennantite weathering at historic mine sites Špania Dolina-Piesky and Ľubietova-Svatodušná, Slovakia. American Mineralogist, 102, 1091–1100.Search in Google Scholar

Brown, I.D. (2002) The Chemical Bond in Inorganic Chemistry: The Bond Valence Model. Oxford University Press.Search in Google Scholar

Đorđević, T., Kolitsch, U., Serafimovski, T., Tasev, G., Tepe, N., Stöger-Pollach, M., Hofmann, T., and Boev, B. (2019) Mineralogy and weathering of realgarrich tailings at a former As-Sb-Cr mine at Lojane, North Macedonia. Canadian Mineralogist, 57, 403–423.Search in Google Scholar

Ferraris, G., Jones, D.W., and Yerkess, J. (1971) Symmetrical hydrogen bonds in the crystal structure of calcium bis(dihydrogen arsenate): a neutron-diffraction study. Journal of the Chemical Society D, 23, 1566–1567.10.1039/c29710001566Search in Google Scholar

Ferraris, G., Jones, D.W., and Yerkess, J. (1972) A neutron diffraction study of the crystal structure of calcium bis(dihydrogen arsenate), Ca(H2AsO42 Acta Crystallographica, B28, 2430–2437.10.1107/S0567740872006247Search in Google Scholar

Gagné, O.C., and Hawthorne, F.C. (2015) Comprehensive derivation of bond-valence parameters for ion pairs involving oxygen. Acta Crystallographica, B71, 562–578.10.1107/S2052520615016297Search in Google Scholar PubMed PubMed Central

Gunter, M.E., Bandli, B.R., Bloss, F.D., Evans, S.H., Su, S.C., and Weaver, R. (2004) Results from a McCrone spindle stage short course, a new version of EXCALIBR, and how to build a spindle stage. The Microscope, 52, 23–39.Search in Google Scholar

Herpin, P., and Pierrot, R. (1963) La weilite, CaH(AsO4 un nouvel arséniate de calcium isomorphe de la monétite. Bulletin de la Societé Française de Minéral et de Cristallographie, 86, 368–372.10.3406/bulmi.1963.5666Search in Google Scholar

Higashi, T. (2001) ABSCOR. Rigaku Corporation, Tokyo.Search in Google Scholar

Keim, M.F., Staude, M., Marquardt, K., Bachmann, K., Opitz, J., and Markl, G. (2018) Weathering of Bi-tennantite. Chemical Geology, 499, 1–25.10.1016/j.chemgeo.2018.07.032Search in Google Scholar

Kolitsch, U., Sejkora, J., Topa, D., Kampf, A.R., Plášil, J., Rieck, B., and Fabritz, K.H. (2018) Pracharite, IMA 2018-081. CNMNC Newsletter No. 46, December 2018, page 1183; European Journal of Mineralogy, 30, 1181–1189.Search in Google Scholar

Libowitzky E. (1999) Correlation of O–H stretching frequencies and O–H···O hydrogen bond lengths inminerals. Monatshefte für Chemie, 130, 1047–1059.10.1007/BF03354882Search in Google Scholar

Majzlan, J., Plášil, J., Škoda, R., Gescher, J., Kögler, P., Rusznyak, A., Küsel, K., Neu, T.R., Mangold, S., and Rothe, J. (2014) Arsenic-rich acid mine water with extreme arsenic concentration: mineralogy, geochemistry, microbiology, and environmental implications. Environmental Science & Technology, 48, 13685–13693.10.1021/es5024916Search in Google Scholar PubMed

Majzlan, J., Kiefer, S., Hermann, J., Števko, M., Sejkora, J., Chovan, M., Láncosz, T., Lazarov, M., Gerdes, A., Langenhorst, F., Borčinová Radková, A., Jamieson, H., and Milovský, R. (2018) Synergies in elemental mobility during weathering of tetrahedrite [(Cu,Fe,Zn)12(Sb,As)4S13 Field observations, electron microscopy, isotopes of Cu, C, O, radiometric dating, and water geochemistry. Chemical Geology, 488, 1–20.10.1016/j.chemgeo.2018.04.021Search in Google Scholar

Mandarino, J.A. (2007) The Gladstone–Dale compatibility of minerals and its use in selecting mineral species for further study. Canadian Mineralogist, 45, 1307–1324.10.2113/gscanmin.45.5.1307Search in Google Scholar

Markl, G., Marks, M.A.W., Derrey, I., and Gühring, J.E. (2014) Weathering of cobalt arsenides: natural assemblages and calculated stability relations among secondary Ca–Mg–Co arsenates and carbonates. American Mineralogist, 99, 44–56.10.2138/am.2014.4540Search in Google Scholar

Meisser, N., Plášil, J., Brunsperger, T., Lheur, C., and Škoda, R. (2019) Giftgrubeite, CaMn2Ca2(AsO42(AsO3OH)2×4H2O, a new member of the hureaulite group from Sainte-Marie-aux-Mines, Haut-Rhin Department, Vosges, France. Journal of Geosciences, 64, 73–80.10.3190/jgeosci.276Search in Google Scholar

Merlet, C. (1994) An accurate computer correction program for quantitative electron probe microanalysis. Microchimica Acta, 114/115, 363–376.10.1007/BF01244563Search in Google Scholar

Mills, S.J., Kolitsch, U., Miyawaki, R., Groat, L.A., and Poirier, G. (2009) Joëlbruggerite, Pb3Zn3(Sb5+Te6+As2O13(OH,O), the Sb5+ analogue of dugganite, from the Black Pine mine, Montana. American Mineralogist, 94, 1012–1017.10.2138/am.2009.3141Search in Google Scholar

Petríček, V., Dušek, M., and Palatinus, L. (2014) Crystallographic Computing System Jana 2006: general features. Zeitschrift für Kristallographie, 229, 345–352.10.1515/zkri-2014-1737Search in Google Scholar

Pierrot, R. (1964) Contribution à la minéralogie des arséniates calciques et calcaromagnésiens naturels. Bulletin de la Societé Française de Minéral et de Cristallographie, 87, 169–211.Search in Google Scholar

Sarp, H. (1984) Villyaellenite, H2(Mn,Ca)5(AsO44×4H2O un nouveau mineral de Sainte-Marie aux-Mines (France). Schweizerische mineralogishe petrographische Mitteilungen, 64, 323–328.Search in Google Scholar

Sarp, H., Deferne, J., and Liebich, B.W. (1981) La mcnéarite, NaCa5H4(AsO45×4H2O, un nouvel arséniate hydraté de calcium et de sodium. Schweizerische mineralogishe petrographische Mitteilungen, 61, 1–6.Search in Google Scholar

Sheldrick, G.M. (2015) Crystal structure refinement with SHELXL. Acta Crystallographica, C71, 3–8.Search in Google Scholar

Süsse, P., and Tillmann, B. (1987) The crystal structure of the new mineral richelsdorfite, Ca2Cu5Sb(Cl/(OH)6(AsO44×6H2O. Zeitschrift für Kristallographie, 179, 323–334.10.1524/zkri.1987.179.1-4.323Search in Google Scholar

Received: 2019-05-28
Accepted: 2019-11-23
Published Online: 2020-04-02
Published in Print: 2020-04-28

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 21.5.2024 from https://www.degruyter.com/document/doi/10.2138/am-2020-7133/html
Scroll to top button