Plant Protect. Sci., 2022, 58(2):81-91 | DOI: 10.17221/147/2021-PPS

Phages of phytopathogenic bacteria: High potential, but challenging applicationReview

Nataliia Korniienko1,2, Alla Kharina2, Iryna Budzanivska2, Lenka Burketová*,1, Tetiana Kalachova ORCID...*,1
1 Laboratory of Pathological Plant Physiology, Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czech Republic
2 ESC "Institute of Biology", Taras Shevchenko National University of Kyiv, Kyiv, Ukraine

Phytopathogenic bacteria are one of the most significant causes of crop yield losses. Until now, the direct treatment of bacterioses was limited to the application of antibacterial compounds or resistance inducers. This is about to change due to the revolutionary discovery of phages. Indeed, bacteriophages look very promising as therapy agents: cheap, self-amplifying, self-eliminating, and safe for the host organism. However, phage therapy of plant diseases remains a "direction with high potential", which, so far, has very few successful implication cases. Here, we discuss recent advances in phage research, focusing on the challenges associated with the evaluation of phage biological activity, under both laboratory and environmental conditions.

Keywords: bacteriophages; field application; plant protection; phage application

Published: March 28, 2022  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Korniienko N, Kharina A, Budzanivska I, Burketová L, Kalachova T. Phages of phytopathogenic bacteria: High potential, but challenging application. Plant Protect. Sci.. 2022;58(2):81-91. doi: 10.17221/147/2021-PPS.
Download citation

References

  1. Addy H., Askora A., Kawasaki T., Fujie M., Yamada T. (2012): Utilization of filamentous phage ΦRSM3 to control bacterial wilt caused by Ralstonia solanacearum. Plant Disease, 96: 1204-1209. Go to original source... Go to PubMed...
  2. Adriaenssens E.M., Van Vaerenbergh J., Vandenheuvel D., Dunon V., Ceyssens P.J., De Proft M., Kropinski A.M., Noben J.P., Maes M., Lavigne R. (2012): T4-Related bacteriophage LIMEstone isolates for the control of soft rot on potato caused by Dickeya solani. PLoS One, 7: e33227. doi: 10.1371/journal.pone.0033227 Go to original source... Go to PubMed...
  3. Akbaba M., Ozaktan H. (2021): Evaluation of bacteriophages in the biocontrol of Pseudomonas syringae pv. syringae isolated from cankers on sweet cherry (Prunus avium L.) in Turkey. Egyptian Journal of Biological Pest Control, 31: 35. doi: 10.1186/s41938-021-00385-7 Go to original source...
  4. Balogh B., Canteros B.I., Stall R.E., Jones J.B. (2008): Control of citrus canker and citrus bacterial spot with bacteriophages. Plant Disease, 92: 1048-1052. Go to original source... Go to PubMed...
  5. Balogh B., Jones J.B., Iriarte F.B., Momol M.T. (2010): Phage therapy for plant disease control. Current Pharmaceutical Biotechnology, 11: 48-57. Go to original source... Go to PubMed...
  6. Boulé J., Sholberg P.L., Lehman S.M., O'gorman D.T., Svircev A.M. (2011): Isolation and characterization of eight bacteriophages infecting Erwinia amylovora and their potential as biological control agents in British Columbia, Canada. Canadian Journal of Plant Pathology, 33: 308-317. Go to original source...
  7. Braga L.P.P., Spor A., Kot W., Breuil M.C., Hansen L.H., Setubal J.C., Philippot L. (2020): Impact of phages on soil bacterial communities and nitrogen availability under different assembly scenarios. Microbiome, 8: 52. doi: 10.1186/s40168-020-00822-z Go to original source... Go to PubMed...
  8. Brockhurst M.A., Fenton A., Roulston B., Rainey P.B. (2006): The impact of phages on interspecific competition in experimental populations of bacteria. BMC Ecology, 6: 19. doi: 10.1186/1472-6785-6-19 Go to original source... Go to PubMed...
  9. Buttimer C., McAuliffe O., Ross R.P., Hill C., O'Mahony J., Coffey A. (2017): Bacteriophages and bacterial plant diseases. Frontiers in Microbiology, 8: 34. doi: 10.3389/fmicb.2017.00034 Go to original source... Go to PubMed...
  10. Carstens A.B., Djurhuus A.M., Kot W., Hansen L.H. (2019): A novel six-phage cocktail reduces Pectobacterium atrosepticum soft rot infection in potato tubers under simulated storage conditions. FEMS Microbiology Letters, 366: fnz101. doi: 10.1093/femsle/fnz101 Go to original source... Go to PubMed...
  11. Czajkowski R., Ozymko Z., Lojkowska E. (2014): Isolation and characterization of novel soilborne lytic bacteriophages infecting Dickeya spp. biovar 3 (D. solani). Plant Pathology, 63: 758-772. Go to original source...
  12. Czajkowski R., Ozymko Z., Jager V., de Siwinska J., Smolarska A., Ossowicki A., Narajczyk M., Lojkowska E. (2015): Genomic, proteomic and morphological characterization of two novel broad host lytic bacteriophages ΦPD10.3 and ΦPD23.1 infecting pectinolytic Pectobacterium spp. and Dickeya spp. PLoS One, 10: e0119812. doi: 10.1371/journal.pone.0119812 Go to original source... Go to PubMed...
  13. Das M., Bhowmick T.S., Ahern S.J., Young R., Gonzalez C.F. (2015): Control of Pierce's disease by phage. PLoS One, 10: e0128902. doi: 10.1371/journal.pone.0128902 Go to original source... Go to PubMed...
  14. Frampton R.A., Pitman A.R., Fineran P.C. (2012): Advances in bacteriophage-mediated control of plant pathogens. International Journal of Microbiology, 2012: 326452. doi: 10.1155/2012/326452 Go to original source... Go to PubMed...
  15. Fujiwara A., Fujisawa M., Hamasaki R., Kawasaki T., Fujie M., Yamada T. (2011): Biocontrol of Ralstonia solanacearum by treatment with lytic bacteriophages. Applied and Environmental Microbiology, 77: 4155-4162. Go to original source... Go to PubMed...
  16. Gašić K., Kuzmanović N., Ivanović M., Prokić A., Šević M., Obradović A. (2018): Complete genome of the Xanthomonas euvesicatoria specific bacteriophage KΦ1, its survival and potential in control of pepper bacterial spot. Frontiers in Microbiology, 9: 2021. doi: 10.3389/fmicb.2018.02021 Go to original source... Go to PubMed...
  17. Goyer C. (2005): Isolation and characterization of phages Stsc1 and Stsc3 infecting Streptomyces scabiei and their potential as biocontrol agents. Canadian Journal of Plant Pathology, 27: 210-216. Go to original source...
  18. Hernandez C.A., Koskella B. (2019): Phage resistance evolution in vitro is not reflective of in vivo outcome in a plantbacteria-phage system. Evolution, 73: 2461-2475. Go to original source... Go to PubMed...
  19. Hernandez C.A., Salazar A.J., Koskella B. (2020): Bacteriophage-mediated reduction of bacterial speck on tomato seedlings. PHAGE, 1: 205-212. Go to original source... Go to PubMed...
  20. Ibrahim Y.E., Saleh A.A., Al-Saleh M.A. (2017): Management of asiatic citrus canker under field conditions in Saudi Arabia using bacteriophages and acibenzolar-S-methyl. Plant Disease, 101: 761-765. Go to original source... Go to PubMed...
  21. Iriarte F.B., Obradović A., Wernsing M.H., Jackson L.E., Balogh B., Hong J.A., Momol M.T., Jones J.B., Vallad G.E. (2012): Soil-based systemic delivery and phyllosphere in vivo propagation of bacteriophages. Bacteriophage, 2: 215-224. Go to original source... Go to PubMed...
  22. Kassa T. (2021): Bacteriophages against pathogenic bacteria and possibilities for future application in Africa. Infection and Drug Resistance, 14: 17-31. Go to original source... Go to PubMed...
  23. Kim M.H. (2011): Bacteriophages of Pseudomonas tolaasii for the biological control of brown blotch disease. Journal of the Korean Society for Applied Biological Chemistry, 54: 99-104. Go to original source...
  24. Kimmelshue C., Goggi A.S., Cademartiri R. (2019): The use of biological seed coatings based on bacteriophages and polymers against Clavibacter michiganensis subsp. nebraskensis in maize seeds. Scientific Reports, 9: 17950. doi: 10.1038/s41598-019-54068-3 Go to original source... Go to PubMed...
  25. Kolozsváriné Nagy J., Schwarczinger I., Künstler A., Pogány M., Király L. (2015): Penetration and translocation of Erwinia amylovora-specific bacteriophages in apple - A possibility of enhanced control of fire blight. European Journal of Plant Pathology, 142: 815-827. Go to original source...
  26. Koskella B., Brockhurst M.A. (2014): Bacteria-phage coevolution as a driver of ecological and evolutionary processes in microbial communities. FEMS Microbiology Reviews, 38: 916-931. Go to original source... Go to PubMed...
  27. Kutter E., De Vos D., Gvasalia G., Alavidze Z., Gogokhia L., Kuhl S., Abedon S. (2010): Phage therapy in clinical practice: Treatment of human infections. Current Pharmaceutical Biotechnology, 11: 69-86. Go to original source... Go to PubMed...
  28. Lallo G.D., Evangelisti M., Mancuso F., Ferrante P., Marcelletti S., Tinari A., Superti F., Migliore L., D'Addabbo P., Frezza D., Scortichini M., Thaller M.C. (2014): Isolation and partial characterization of bacteriophages infecting Pseudomonas syringae pv. actinidiae, causal agent of kiwifruit bacterial canker. Journal of Basic Microbiology, 54: 1210-1221. Go to original source... Go to PubMed...
  29. Lang J.M., Gent D.H., Schwartz H.F. (2007): Management of Xanthomonas leaf blight of onion with bacteriophages and a plant activator. Plant Disease, 91: 871-878. Go to original source... Go to PubMed...
  30. Lee S., Vu N.T., Oh E.J., Rahimi-Midani A., Thi T.N., Song Y.R., Hwang I.S., Choi T.J., Oh C.S. (2021): Biocontrol of soft rot caused by Pectobacterium odoriferum with bacteriophage phiPccP-1 in Kimchi cabbage. Microorganisms, 9: 779. doi: 10.3390/microorganisms9040779 Go to original source... Go to PubMed...
  31. Lim J.A. (2013): Biocontrol of Pectobacterium carotovorum subsp. carotovorum using bacteriophage PP1. Journal of Microbiology and Biotechnology, 23: 1147-1153. Go to original source... Go to PubMed...
  32. Luo D., Li C., Wu Q., Ding Y., Yang M. Hu Y., Zeng H., Zhang J. (2021): Isolation and characterization of new phage vB_CtuP_A24 and application to control Cronobacter spp. in infant milk formula and lettuce. Food Research International, 141: 110109. doi: 10.1016/j.foodres.2021.110109 Go to original source... Go to PubMed...
  33. McKenna F., El-Tarabily K.A., Hardy G.E.S.J., Dell B. (2001): Novel in vivo use of a polyvalent Streptomyces phage to disinfest Streptomyces scabies-infected seed potatoes. Plant Pathology, 50: 666-675. Go to original source...
  34. Morella N.M., Gomez A.L., Wang G., Leung M.S., Koskella B. (2018): The impact of bacteriophages on phyllosphere bacterial abundance and composition. Molecular Ecology, 27: 2025-2038. Go to original source... Go to PubMed...
  35. Moye Z.D., Woolston J., Sulakvelidze A. (2018): Bacteriophage applications for food production and processing. Viruses, 10: 205. doi: 10.3390/v10040205 Go to original source... Go to PubMed...
  36. Nagy J.K., Király L., Schwarczinger I. (2012): Phage therapy for plant disease control with a focus on fire blight. Central European Journal of Biology, 7: 1-12. Go to original source...
  37. Obradovic A., Jones J.B., Momol M.T., Balogh B., Olson S.M. (2004): Management of tomato bacterial spot in the field by foliar applications of bacteriophages and SAR inducers. Plant Disease, 88: 736-740. Go to original source... Go to PubMed...
  38. Obradovic A., Jones J.B., Momol M.T., Olson S.M., Jackson L.E., Balogh B., Guven K., Iriarte F.B. (2005): Integration of biological control agents and systemic acquired resistance inducers against bacterial spot on tomato. Plant Disease, 89: 712-716. Go to original source... Go to PubMed...
  39. O'Brien S., Kümmerli R., Paterson S., Winstanley C., Brockhurst M.A. (2019): Transposable temperate phages promote the evolution of divergent social strategies in Pseudomonas aeruginosa populations. Proceedings of the Royal Society B: Biological Sciences, 286: 20191794. doi: 10.1098/rspb.2019.1794 Go to original source... Go to PubMed...
  40. Papaianni M., Paris D., Woo S.L., Fulgione A., Rigano M.M., Parrilli E., Tutino M.L., Marra R., Manganiello G., Casillo A., Limone A., Zoina A., Motta A., Lorito M., Capparelli R. (2020): Plant dynamic metabolic response to bacteriophage treatment after Xanthomonas campestris pv. campestris infection. Frontiers in Microbiology, 11: 732. doi: 10.3389/fmicb.2020.00732 Go to original source... Go to PubMed...
  41. Park J., Lee G.M., Kim D., Park D.H., Oh C.S. (2018): Characterization of the lytic bacteriophage phiEaP-8 effective against both Erwinia amylovora and Erwinia pyrifoliae causing severe diseases in apple and pear. Plant Pathology Journal, 34: 445-450. Go to original source... Go to PubMed...
  42. Pinheiro L.A.M., Pereira C., Barreal M.E., Gallego P.P., Balcão V.M., Almeida A. (2020): Use of phage φ6 to inactivate Pseudomonas syringae pv. actinidiae in kiwifruit plants: In vitro and ex vivo experiments. Applied Microbiology and Biotechnology, 104: 1319-1330. Go to original source...
  43. Pratama A.A., Terpstra J., de Oliveria A.L.M., Salles J.F. (2020): The role of rhizosphere bacteriophages in plant health. Trends in Microbiology, 28: 709-718. Go to original source... Go to PubMed...
  44. Rabiey M., Roy S.R., Holtappels D., Franceschetti L., Quilty B.J., Creeth R., Sundin G.W., Wagemans J., Lavigne R., Jackson R.W. (2020): Phage biocontrol to combat Pseudomonas syringae pathogens causing disease in cherry. Microbial Biotechnology, 13: 1428-1445. Go to original source... Go to PubMed...
  45. Ramírez M., Neuman B.W., Ramírez C.A. (2020): Bacteriophages as promising agents for the biological control of Moko disease (Ralstonia solanacearum) of banana. Biological Control, 149: 104238. doi: 10.1016/j.biocontrol.2020.104238 Go to original source...
  46. Ranjani P., Gowthami Y., Gnanamanickam S., Palani P. (2018): Bacteriophages: A new weapon for the control of bacterial blight disease in rice caused by Xanthomonas oryzae. Microbiology and Biotechnology Letters, 46: 346-359. Go to original source...
  47. Ravensdale M., Blom T., Gracia-Garza J., Smith R. (2007): Bacteriophages and the control of Erwinia carotovora subsp. carotovora. Canadian Journal of Plant Pathology, 29: 121-130. Go to original source...
  48. Rombouts S., Volckaert A., Venneman S., Declercq B., Vandenheuvel D., Allonsius C.N., Van Malderghem C., Jang H.B., Briers Y., Noben J.P., Klumpp J., Van Vaerenbergh J., Maes M., Lavigne R. (2016): Characterization of novel bacteriophages for biocontrol of bacterial blight in leek caused by Pseudomonas syringae pv. porri. Frontiers in Microbiology, 7: 279. doi: 10.3389/fmicb.2016.00279 Go to original source... Go to PubMed...
  49. Sasaki R., Miyashita S., Ando S., Ito K., Fukuhara T., Takahashi H. (2021): Isolation and characterization of a novel jumbo phage from leaf litter compost and its suppressive effect on rice seedling rot diseases. Viruses, 13: 591. doi: 10.3390/v13040591 Go to original source... Go to PubMed...
  50. Sharma R.S., Nayak S., Malhotra S., Karmakar S., Sharma M., Raiping S., Mishra V. (2019): Rhizosphere provides a new paradigm on the prevalence of lysogeny in the environment. Soil and Tillage Research, 195: 104368. doi: 10.1016/j.still.2019.104368 Go to original source...
  51. Song Y.R., Vu N.T., Park J., Hwang I.S., Jeong H.J., Cho Y.S., Oh C.S. (2021): Phage PPPL-1, a new biological agent to control bacterial canker caused by Pseudomonas syringae pv. actinidiae in kiwifruit. Antibiotics, 10: 554. doi: 10.3390/antibiotics10050554 Go to original source... Go to PubMed...
  52. Starr E.P., Nuccio E.E., Pett-Ridge J., Banfield J.F., Firestone M.K. (2019): Metatranscriptomic reconstruction reveals RNA viruses with the potential to shape carbon cycling in soil. Proceedings of the National Academy of Sciences of the United States of America, 116: 25900-25908. Go to original source... Go to PubMed...
  53. Stonier T., McSharry J., Speitel T. (1967): Agrobacterium tumefaciens Conn. IV. Bacteriophage PB21 and its inhibitory effect on tumor induction. Journal of Virology, 1: 268-273. Go to original source... Go to PubMed...
  54. Umrao P.D., Kumar V., Kaistha S.D. (2021): Biocontrol potential of bacteriophage φsp1 against bacterial wilt-causing Ralstonia solanacearum in Solanaceae crops. Egyptian Journal of Biological Pest Control, 31: 61. doi: 10.1186/s41938-021-00408-3 Go to original source...
  55. Vu N.T., Oh C.S. (2020): Bacteriophage usage for bacterial disease management and diagnosis in plants. The Plant Pathology Journal, 36: 204-217. Go to original source... Go to PubMed...
  56. Weitz J.S., Wilhelm S.W. (2012): Ocean viruses and their effects on microbial communities and biogeochemical cycles. F1000 Biology Reports, 4: 17. doi: 10.3410/B4-17 Go to original source... Go to PubMed...
  57. Williamson K.E., Fuhrmann J.J., Wommack K.E., Radosevich M. (2017): Viruses in soil ecosystems: An unknown quantity within an unexplored territory. Annual Review of Virology, 4: 201-219. Go to original source... Go to PubMed...
  58. Yin K., Qiu J.L. (2019): Genome editing for plant disease resistance: Applications and perspectives. Philosophical Transactions of the Royal Society B: Biological Sciences, 374: 20180322. doi: 10.1098/rstb.2018.0322 Go to original source... Go to PubMed...
  59. Zaczek-Moczydłowska M.A., Young G.K., Trudgett J., Plahe C., Fleming C.C., Campbell K., Hanlon R.O. (2020): Phage cocktail containing Podoviridae and Myoviridae bacteriophages inhibits the growth of Pectobacterium spp. under in vitro and in vivo conditions. PLoS One, 15: e0230842. doi: 10.1371/journal.pone.0230842 Go to original source... Go to PubMed...
  60. Zimmerer R.P., Hamilton R.H., Pootjes C. (1966): Isolation and morphology of temperate Agrobacterium tumefaciens bacteriophage. Journal of Bacteriology, 92: 746-750. Go to original source... Go to PubMed...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.