Skip to main content

Advertisement

Log in

Electrical properties of MXene thin films prepared from non-aqueous polar aprotic solvents

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

For sustainable energy technologies, MXenes offer unique properties such as high electrical conductivity, hydrophilicity, excellent thermal stability, large interlayer spacing, easily tunable structure, high surface area, and microporous structure that facilitate faster ion transfer. To address limitations of aqueous MXene suspension, Ti3C2-type MXene thin films are prepared from non-aqueous suspensions in N,N-dimethyl formamide (DMF) and N-methyl-2-pyrrolidone (NMP) using solvent exchange method followed by spin coating or drop casting on gold interdigitated electrodes (IDE) and ceramic substrates and their electrical properties are compared. Electrical properties investigated by impedance spectroscopy (4 Hz to 8 MHz) and four-point probe (FPP) measurements show that DMF-MXene layers exhibit higher electrical conductivity than MXene deposited from NMP. The material technology and electrical properties of MXene thin films prepared from non-aqueous solvents may thus be promising for possible use of MXenes in hybrid photovoltaic devices as charge-transporting layers.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. A. Sohan, P. Banoth, M. Aleksandrova, A. Nirmala Grace, P. Kollu, Review on MXene synthesis, properties, and recent research exploring electrode architecture for supercapacitor applications. Int. J. Energy Res. 45, 19746–19771 (2021). https://doi.org/10.1002/er.7068

    Article  CAS  Google Scholar 

  2. M. Alhabeb, K. Maleski, B. Anasori, P. Lelyukh, L. Clark, S. Sin, Y. Gogotsi, Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene). Chem. Mater. 29, 7633–7644 (2017). https://doi.org/10.1021/acs.chemmater.7b02847

    Article  CAS  Google Scholar 

  3. H. Tang, R. Wang, L. Shi, E. Sheremet, R.D. Rodriguez, J. Sun, Post-processing strategies for improving the electrical and mechanical properties of MXenes. Chem Eng J. 425, 131472 (2021). https://doi.org/10.1016/j.cej.2021.131472

    Article  CAS  Google Scholar 

  4. T. Mathis, K. Maleski, A. Goad, A. Sarycheva, M. Anayee, A.C. Foucher, K. Hantanasirisakul, E. Stach, Y. Gogotsi, Modified MAX phase synthesis for environmentally stable and highly conductive Ti3C2 MXene. Chemistry (2020). https://doi.org/10.26434/chemrxiv.12805280.v1

  5. N. Driscoll, B. Erickson, B.B. Murphy, A.G. Richardson, G. Robbins, N.V. Apollo, T. Mathis, K. Hantanasirisakul, P. Bagga, S.E. Gullbrand, M. Sergison, R. Reddy, J.A. Wolf, H.I. Chen, T.H. Lucas, T. Dillingham, K.A. Davis, Y. Gogotsi, J.D. Medaglia, F. Vitale, MXtrodes: MXene-infused bioelectronic interfaces for multiscale electrophysiology and stimulation. Bioengineering (2021). https://doi.org/10.1101/2021.03.01.433237

    Article  Google Scholar 

  6. S. Abdolhosseinzadeh, X. Jiang, H. Zhang, J. Qiu, C. (John) Zhang, Perspectives on solution processing of two-dimensional MXenes, Mater. Today 48, 214–240 (2021). https://doi.org/10.1016/j.mattod.2021.02.010

  7. C. Zhang, L. McKeon, M.P. Kremer, S.-H. Park, O. Ronan, A. Seral-Ascaso, S. Barwich, C.Ó. Coileáin, N. McEvoy, H.C. Nerl, B. Anasori, J.N. Coleman, Y. Gogotsi, V. Nicolosi, Additive-free MXene inks and direct printing of micro-supercapacitors. Nat. Commun. 10, 1795 (2019). https://doi.org/10.1038/s41467-019-09398-1

    Article  CAS  Google Scholar 

  8. H. Riazi, S.K. Nemani, M.C. Grady, B. Anasori, M. Soroush, Ti3C2 MXene–polymer nanocomposites and their applications. J. Mater. Chem. A 9, 8051–8098 (2021). https://doi.org/10.1039/D0TA08023C

    Article  CAS  Google Scholar 

  9. A. Iqbal, J. Hong, T.Y. Ko, C.M. Koo, Improving oxidation stability of 2D MXenes: synthesis, storage media, and conditions. Nano Converg. 8, 9 (2021). https://doi.org/10.1186/s40580-021-00259-6

    Article  CAS  Google Scholar 

  10. B. Akuzum, K. Maleski, B. Anasori, P. Lelyukh, N.J. Alvarez, E.C. Kumbur, Y. Gogotsi, Rheological characteristics of 2D titanium carbide (MXene) dispersions: a guide for processing MXenes. ACS Nano 12, 2685–2694 (2018). https://doi.org/10.1021/acsnano.7b08889

    Article  CAS  Google Scholar 

  11. X. Zhao, A. Vashisth, E. Prehn, W. Sun, S. Shah, T. Habib, Y. Chen, Z. Tan, J. Lutkenhaus, M. Radovic, M.J. Green, Antioxidants unlock shelf-stable Ti3C2T (MXene) nanosheet dispersions. Matter. (2019). https://doi.org/10.1016/J.MATT.2019.05.020

    Article  Google Scholar 

  12. K. Sasitharan, J. Kuliček, Y. Soyka, M. Prochazka, M. Omastová, B. Rezek, Microstructure and opto-electronic EFFECTS IN MXenes spincoated from polar aprotic solvents on ito, NANOCON 2021 Conference Proceedings. (2021). https://doi.org/10.37904/nanocon.2021.4307.

  13. H.S. Magar, R.Y.A. Hassan, A. Mulchandani, Electrochemical impedance spectroscopy (EIS): principles construction, and biosensing applications. Sensors. 21, 6578 (2021). https://doi.org/10.3390/s21196578

    Article  CAS  Google Scholar 

  14. I. Mora-Seró, G. Garcia-Belmonte, P.P. Boix, M.A. Vázquez, J. Bisquert, Impedance spectroscopy characterisation of highly efficient silicon solar cells under different light illumination intensities. Energy Environ. Sci. 2, 678 (2009). https://doi.org/10.1039/b812468j

    Article  CAS  Google Scholar 

  15. Z. Li, L. Wang, D. Sun, Y. Zhang, B. Liu, Q. Hu, A. Zhou, Synthesis and thermal stability of two-dimensional carbide MXene Ti3C2. Mater. Sci. Eng. B 191, 33–40 (2015). https://doi.org/10.1016/j.mseb.2014.10.009

    Article  CAS  Google Scholar 

  16. Z. Zhang, H. Cao, Y. Quan, R. Ma, E.B. Pentzer, M.J. Green, Q. Wang, Thermal stability and flammability studies of MXene–organic hybrid polystyrene nanocomposites. Polymers 14, 1213 (2022). https://doi.org/10.3390/polym14061213

    Article  CAS  Google Scholar 

  17. J.-H. Kang, S.-H. Lee, H. Ruh, K.-M. Yu, Development of a thickness meter for conductive thin films using four-point probe method. J. Electr. Eng. Technol. 16, 2265–2273 (2021). https://doi.org/10.1007/s42835-021-00725-5

    Article  Google Scholar 

Download references

Acknowledgments

The work was financially supported by the MSMT/EU project CZ.02.1.01/0.0/0.0/15_003/0000464 (CAP). This work used the large research infrastructure CzechNanoLab supported by the LM2023051 project. The authors thank Polymer Institute, Slovak Academy of Sciences and Drexel University for MXenes. Technical assistance of Rajisa Jackivova is gratefully appreciated.

Funding

Funding was provided by MSMT/EU (Grant No. CZ.02.1.01/0.0/0.0/15_003/0000464) and by MSMT (Grant No. LM2023051).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oksana Gutsul.

Ethics declarations

Conflict of interest

The authors have no financial/commercial Conflict of Interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file (PDF 1381 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gutsul, O., Szabo, O., Kumar, N. et al. Electrical properties of MXene thin films prepared from non-aqueous polar aprotic solvents. Journal of Materials Research 38, 3227–3237 (2023). https://doi.org/10.1557/s43578-023-01033-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-023-01033-6

Navigation