Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter (O) August 17, 2022

Two isomers Ba5Mg4C54O48H114 and Pb5Mg4C54O48H114

  • Jan Fábry EMAIL logo , Erika Samolová and Michal Dušek

Abstract

There are reported two related structures of Ba5Mg4C54O48H114 (dodeca(aqua-6κ3O,7κ3O,8κ3O,9κ3O)-tris(μ2-propanoato-1:6κ2O,1κO′)-tris(μ-propanoato-2:7κ2O,2κO′-tris(μ-propanoato-3:8κ2O,3κO′)-tris(μ-propanoato-4:9κ2O,4κO′)-hexakis(μ3-propanoato-1:5κ2O,2:5κ2O′;1:5κ2O,3:5κ2O′;1:5κ2O,4:5κ2O′;2:5κ2O,3:5κ2O′;2:5κ2O,4:5κ2O′;3:5κ2O,4:5κ2O′)-pentabarium tetramagnesium), (I), and Pb5Mg4C54O48H114 (dodeca(aqua-1κ3O,2κ3O,3κ3O,4κ3O)-hexakis(μ3-propanoato-1:5κ2O,2:5κ2O′;1:5κ2O,3:5κ2O′;1:5 κ2O,4:5κ2O′;2:5κ2O,3:5κ2O′;2:5κ2O,4:5κ2O′;3:5κ2O,4:5κ2O′)tetramagnesium lead(II) tris(propanoato-κ2O,O′)plumbate(II)), (II). The title structures are compositional isomers which crystallize in the same space group type. The structure of (I) comprises molecules with symmetry  4 3 m . The structure (II) comprises the complex cation {Pb(C3H5O2)6[Mg(H2O)3]4}4+ with the symmetry 4 3 m and four anions [tris(propanoato-κ2O,O′)plumbate(II)], [Pb(C3H5O2)3] , with 3m symmetry. The central cations Ba12+ and Pb12+ in (I) and in the cation {Pb(C3H5O2)6[Mg(H2O)3]4}4+ of the structure (II), respectively, have similar structural features which are comparable to the environment of the Ba2+ cation in BaCa2(C3H5O2)6 [Stadnicka, K. & Glazer, A. M. (1980). Acta Cryst. B36, 2977–2985]. The molecules in (I) and the ions in (II) are interconnected by Owater‒H⋯Opropanoate hydrogen bonds of a moderate strength. The ethyl chains are disordered which is common in propanoates. However, there are unprecedented features in the title structures: 1) The central atom Pb12+ is the first known example of a Pb2+ cation which is surrounded by six carboxylates in a bidentate bridging mode, i.e. by 12 oxygens. 2) The anion [tris(propanoato-κ2O,O′)plumbate(II)] has a constitution with unusually prominent stereochemical activity of the 6s2 electron pair of the cation Pb2+ completing the coordination to the tetrahedral one. Thus, its formula can be expressed as [Pb[ψ−4t](C3H5O2)3]. 3) In both title structures, there are propanoate molecules with disordered carboxylate oxygens.


Corresponding author: Jan Fábry, Institute of Physics, Academy of Sciences of the Czech Republic, Na Slovance 2, 182 21 Praha 8, Czech Republic, E-mail:

Funding source: Grant Agency of the Czech Republic

Award Identifier / Grant number: Project No. 19-28594X

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This work was supported by the Czech Science Foundation (Project No. 19-28594X) which was granted to the Institute of Physics of the Academy of Sciences of the Czech Republic.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Stadnicka, K., Glazer, A. M. Acta Crystallogr. 1980, B36, 2977–2985; https://doi.org/10.1107/s0567740880010643.Search in Google Scholar

2. Groom, C. R., Bruno, I. J., Lightfoot, M. P., Ward, S. C. Acta Crystallogr. 2016, B72, 171–179; https://doi.org/10.1107/s2052520616003954.Search in Google Scholar PubMed PubMed Central

3. Kasatani, H. J. Phys. Soc. Jpn. 1990, 59, 1647–1659; https://doi.org/10.1143/jpsj.59.1647.Search in Google Scholar

4. Mishima, N. J. Phys. Soc. Jpn. 1984, 53, 1062–1070; https://doi.org/10.1143/jpsj.53.1062.Search in Google Scholar

5. Lima-de-Faria, J., Hellner, E., Liebau, F., Makovicky, E., Parthé, E. Acta Crystallogr. 1990, A46, 1–11; https://doi.org/10.1107/s0108767389008834.Search in Google Scholar

6. Coker, E. N., Boyle, T. J., Rodriguez, M. A., Alam, T. M. Polyhedron 2004, 23, 1739–1747; https://doi.org/10.1016/j.poly.2004.04.005.Search in Google Scholar

7. Shannon, R. D. Acta Crystallogr. 1976, A32, 751–767; https://doi.org/10.1107/s0567739476001551.Search in Google Scholar

8. Nakamura, N., Suga, H., Chihara, H., Seki, S. Bull. Chem. Soc. Jpn. 1968, 41, 291–296; https://doi.org/10.1246/bcsj.41.291.Search in Google Scholar

9. Fábry, J., Dušek, M. Acta Crystallogr. 2021, C77, 683–690.10.1107/S205322962101024XSearch in Google Scholar

10. Fábry, J., Samolová, E., Dušek, M. 2022. In preparation.Search in Google Scholar

11. Gesi, K., Ozawa, K. J. Phys. Soc. Jpn. 1975, 39, 1026–1031; https://doi.org/10.1143/jpsj.39.1026.Search in Google Scholar

12. Petrenko, P. A., Kiosse, G. A., Malinovskij, T. I. Kristallografiya 1990, 35, 1415–1420.Search in Google Scholar

13. Nakamura, N., Suga, H., Chihara, H., Seki, S. Bull. Chem. Soc. Jpn. 1965, 38, 1779–1787; https://doi.org/10.1246/bcsj.38.1779.Search in Google Scholar

14. Brese, N. R., O’Keeffe, M. Acta Crystallogr. 1991, B47, 192–197; https://doi.org/10.1107/s0108768190011041.Search in Google Scholar

15. Glazer, A. M., Stadnicka, K., Singh, S. J. Phys. C Solid State Phys. 1981, 14, 5011–5029; https://doi.org/10.1088/0022-3719/14/33/011.Search in Google Scholar

16. Stadnicka, K., Glazer, A. M., Singh, S., Śliwiński, J. J. Phys. C Solid State Phys. 1982, 15, 2577–2586; https://doi.org/10.1088/0022-3719/15/12/007.Search in Google Scholar

17. Powder Diffraction File 4+ (2020). International Centre for Diffraction Data: USA.Search in Google Scholar

18. Sheldrick, G. M. Acta Crystallogr. 2015, A71, 3–8; https://doi.org/10.1107/s2053273314026370.Search in Google Scholar

19. Petříček, V., Dušek, M., Palatinus, L. Z. Kristallogr. 2014, 229, 345–352.10.1515/zkri-2014-1737Search in Google Scholar

20. Gilli, G., Gilli, P. The Nature of the Hydrogen Bond; Oxford University Press Inc.: New York, 2009; p. 61.10.1093/acprof:oso/9780199558964.001.0001Search in Google Scholar

21. Rigaku, O. D. CrysAlisPro; Rigaku Oxford Diffraction: Yarnton, England, 2019.Search in Google Scholar

22. Brandenburg, K. Diamond; Crystal Impact: Bonn, Germany, 2005.Search in Google Scholar

23. Shannon, R. D. Acta Crystallogr. 1976, A32, 751–767; https://doi.org/10.1107/s0567739476001551.Search in Google Scholar

24. Eberle, B., Damjanović, M., Enders, M., Leingang, S., Pfisterer, J., Kräme, C., Hübner, O., Kaifer, E., Himmel, H.-J. Inorg. Chem. 2016, 55, 1683–1696; https://doi.org/10.1021/acs.inorgchem.5b02614.Search in Google Scholar PubMed

25. Chen, Y.-T., Chun-Yen, L., Gene-Hsiang, L., Mei-Lin, H. CrystEngComm 2015, 17, 2129–2140; https://doi.org/10.1039/c4ce02457e.Search in Google Scholar

26. Ng, S. W. Acta Crystallogr. 2021, C77, 443–448.Search in Google Scholar


Supplementary Material

The online version of this article offers supplementary material (https://doi.org/10.1515/zkri-2021-2074).


Received: 2021-12-08
Accepted: 2022-06-09
Published Online: 2022-08-17
Published in Print: 2022-09-27

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 6.5.2024 from https://www.degruyter.com/document/doi/10.1515/zkri-2021-2074/html
Scroll to top button