Skip to main content
Log in

Temperature-induced charge transfer in Fe-doped ZnSe single crystal: mechanism and features

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

We have collected the EPR spectra for Fe ions of zinc selenide single crystals in the temperature range from 5 to 300 K. The samples under test were grown by the Bridgman method and had a homogeneous structure of the ZnSe:Fe solid solution. Temperature-induced charge transfer from Fe3+ into Fe2+ on cooling is detected. The EPR spectrum formation mechanism is studied using a complex theoretical approach that combines the semi-empirical Modified Crystal Field Theory and structure optimizations using the DFT-based band-periodic plane-wave pseudopotential method. A theoretical model of the EPR spectrum formation due to two alternative paramagnetic sub-systems related to Fe2+ and Fe3+ ions is developed. The manifestation of structural defects occurring in the doping process in the EPR spectrum formation is analyzed.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Availability of data and materials: All data generated or analyzed during this study are included in this published article.

References

  1. N. Alonso-Vante, Chalcogenide Materials for Energy Conversion: Pathways to Oxygen and Hydrogen Reactions (Springer International Publishing AG, Berlin, Heidelberg, 2018), p.226

    Book  Google Scholar 

  2. W. Phillips, Chalcogenides: Advances in Research and Applications (Nova Science Pub Inc, New York, 2018), p.111

    Google Scholar 

  3. V. Kolobov, J. Tominaga, Chalcogenides Metastability and Phase Change Phenomena. Springer Series in Materials Science, vol. 164 (Springer, Berlin, Heidelberg, 2012)

    Book  Google Scholar 

  4. X. Liu, S. Lee, J.K. Furdyna, T. Luo, Y.-H. Zhang, Chalcogenide: From 3D to 2D and Beyond (Elsevier, Cambridge, 2019), p.385

    Google Scholar 

  5. S.A. Wolf, D.D. Awschalom, R.A. Buhrman, J.M. Daughton, S. Molnár, M.L. Roukes, A.Y. Chtchelkanova, D.M. Treger, Science 294, 1488 (2001)

    Article  ADS  Google Scholar 

  6. S.C. Erwin, I. Žutić, Nat. Mater. 3, 410 (2004)

    Article  ADS  Google Scholar 

  7. J.F. Žutić, S. Das Sarma, Rev. Mod. Phys. 76, 323 (2004)

    Article  ADS  Google Scholar 

  8. S. Kuroda, N. Nishizawa, K. Takita, M. Mitome, Y. Bando, K. Osuch, T. Dietl, Nat. Mater. 6, 440 (2007)

    Article  ADS  Google Scholar 

  9. T. Dietl, H. Ohno, Rev. Mod. Phys. 86, 187 (2014)

    Article  ADS  Google Scholar 

  10. S.B. Mirov, V.V. Fedorov, D. Martyshkin, I.S. Moskalev, M. Mirov, S. Vasilyev, IEEE J. Sel. Top. Quantum Electron. 21, 1601719 (2015)

    Article  Google Scholar 

  11. S.B. Mirov, I.S. Moskalev, S. Vasilyev, V. Smolski, V.V. Fedorov, D. Martyshkin, J. Peppers, M. Mirov, A. Dergachev, V. Gapontsev, IEEE J. Sel. Top. Quantum Electron. 24, 1 (2018)

    Article  Google Scholar 

  12. J.J. Adams, C. Bibeau, R.H. Page, D.M. Krol, L.H. Furu, S.A. Payne, Opt. Lett. 24(23), 1720 (1999)

    Article  ADS  Google Scholar 

  13. J.W. Evans, Iron-Doped Zinc Selenide: Spectroscopy and Laser Development. Ph.D. thesis Air Force Institute of Technology, Ohio (2014)

  14. T. Dietl, D.D. Awschalom, M. Kaminska, H. Ohno, Spintronics (Elsevier, Amsterdam, 2009)

    Google Scholar 

  15. T. Smoleński, T. Kazimierczuk, J. Kobak, M. Goryca, A. Golnik, P. Kossacki, W. Pacuski, Nat. Comm. 7, 1048 (2016)

    Article  Google Scholar 

  16. J. Mycielski, Solid State Commun. 60, 165 (1986)

    Article  ADS  Google Scholar 

  17. M.E. Doroshenko, H. Jelínková, P. Koranda, J. Šulc, T.T. Basiev, V.V. Osiko, V.K. Komar, A.S. Gerasimenko, V.M. Puzikov, V.V. Badikov, Laser Phys. Lett. 7, 38 (2010)

    Article  ADS  Google Scholar 

  18. V.V. Fedorov, S.B. Mirov, A. Gallian, D.V. Badikov, M.P. Frolov, Y.V. Korostelin, V.I. Kozlovsky, A.I. Landman, Y.P. Podmar’kov, V.A. Akimov, A.A. Voronov, IEEE J. Quantum Electron. 42, 907 (2006)

    Article  ADS  Google Scholar 

  19. K.V. Lamonova, I. Ivanchenko, S. Orel, S. Paranchich, V. Tkach, E. Zhitlukhina, N. Popenko, Yu. Pashkevich, J. Phys. Condens. Matter. 21, 045603 (2009)

    Article  ADS  Google Scholar 

  20. K. Lamonova, B. Bekirov, I. Ivanchenko, N. Popenko, E. Zhitlukhina, V. Burkhovetskii, S. Orel, Y. Pashkevich, Low Temp. Phys. 40(7), 842 (2014)

    Article  Google Scholar 

  21. K.V. Lamonova, R.Yu. Babkin, Yu.G. Pashkevich, B. Bekirov, I. Ivanchenko, N. Popenko, M. Gidulyanov, D. Savchenko, N. Kovalenko, 2020 IEEE Ukrainian Microwave Week, 849 (2020)

  22. W.C. Holton, J. Schneider, T.L. Estle, Phys. Rev. A 133, 1638 (1964)

    Article  ADS  Google Scholar 

  23. T.B. Buch, B. Clerjaud, B. Lambert, P. Kovacs, Phys. Rev. B 7(1), 184 (1973)

    Article  ADS  Google Scholar 

  24. J.R. Pilbrow, Transition Ion Electron Paramagnetic Resonance (Clarendon, Oxford, 1990), p.717

    Google Scholar 

  25. D.D. Kramushchenko, I.V. Ilyin, V.A. Soltamov, P.G. Baranov, V.P. Kalinushkin, M.I. Studenikin, V.P. Danilov, N.N. Ilichev, P.V. Shapkin, Phys. Solid State 55, 269 (2013)

    Article  ADS  Google Scholar 

  26. V.V. Fedorov, T. Konak, J. Dashdorj, M.E. Zvanut, S.V. Mirov, Opt. Mater. 37, 262 (2014)

    Article  ADS  Google Scholar 

  27. V.A. Vazhenin, A.P. Potapov, G.S. Shakurov, A.V. Fokin, MYu. Artyomov, V.I. Kozlovskii, Yu.V. Korostelin, D.S. Pytalev, Phys. Solid State 59, 1993 (2017)

    Article  ADS  Google Scholar 

  28. J.H. Harding, A.M. Stoneham, J. Phys. C: Phys. Solid State 15, 4649 (1982)

    Article  ADS  Google Scholar 

  29. D. Fisher, Defects and Diffusion in II–VI Compounds (Technology & Engineering, Freienbach, 1999), p.380

    Google Scholar 

  30. D. Shaw, Diffusion in Semiconductors, in Springer Handbook of Electronic and Photonic Materials, ed. by S. Kasap, P. Capper (Springer, Cham, 2017)

  31. K.V. Lamonova, S.M. Orel, Y.G. Pashkevich, Modified Crystal Field Theory and its Applications (Kyiv, Akademperiodyka, 2019), p.224

    Book  Google Scholar 

  32. M.C. Payne, M.P. Teter, D.C. Allan, T.A. Arias, J.D. Joannopoulos, Rev. Mod. Phys. 64, 1045 (1992)

    Article  ADS  Google Scholar 

  33. K.V. Lamonova, E.S. Zhitlukhina, RYu. Babkin, S.M. Orel, S.G. Ovchinnikov, Yu.G. Pashkevich, J. Phys. Chem. A. 115, 13596 (2011)

    Article  Google Scholar 

  34. K. Lamonova, I. Danilenko, G. Volkova, S. Orel, Yu. Pashkevich, A. Prokhorov, O. Viagin, P. Maksimchuk, V. Seminko, Yu. Malyukin, V. Kurnosov, J. Lumin. 241, 118493 (2022)

    Article  Google Scholar 

  35. V. Leute, H. Plate, Berichte de Bunsengesellschaft fuer Physikaliche Chemie 93, 757 (1989)

    Article  Google Scholar 

  36. K.V. Shalimova et al., Sov. Phys. Crystallogr. 14, 531–534 (1970)

    Google Scholar 

  37. K. Qadri, H. Kim, E.F. Skelton, J.K. Furdyna, J. Appl. Phys. 67, 2156 (1990)

    Article  ADS  Google Scholar 

  38. K. Laasonen, R. Car, C. Lee, D. Vanderbilt, Phys. Rev. B 43, 6796 (1991)

    Article  ADS  Google Scholar 

  39. J. Perdew, K. Bunrke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    Article  ADS  Google Scholar 

  40. G. Pfrommer, M. Côté, S.G. Louie, M.L. Cohen, J. Comput. Phys. 131, 233 (1997)

    Article  ADS  Google Scholar 

  41. Y.A. Hizhnyi, S.G. Nedilko, V.I. Borysiuk, V.P. Chornii, I.A. Rybalka, S.M. Galkin, I.A. Tupitsyna, N.I. Klyui, Opt. Mater. 97, 109402 (2019)

    Article  Google Scholar 

  42. Z. Wilamowski, A. Mycielski, W. Jantsch, G. Hendorfert, Phys. Rev. B 38, 3621 (1988)

    Article  ADS  Google Scholar 

  43. Z. Wilamowski, W. Jantschg, G. Hendorfert, Semicond. Sci. Technol. 5, S266 (1990)

    Article  ADS  Google Scholar 

  44. T.M. Dunn, Trans. Faraday Soc. 57, 1441 (1961)

    Article  Google Scholar 

  45. Francisco, L. Pueyo, Phys. Rev. A 36, 1978 (1987)

    Article  ADS  Google Scholar 

  46. S.S. Batsanov, R.A. Zvyagina, Overlap Integrals and Problem of Effective Charges (Nauka, Novosibirsk, 1966). ([in Russian])

    Google Scholar 

  47. S.V. Vonsovskii, V.S. Grum-Grzhimailo, V.I. Cherepanov, A.V. Men, D.T. Sviridov, Y.F. Smirnov, A.E. Nikiforov, Crystal Field Theory and Optical Spectra of Ions with an Incompleted d Level (Nauka, Moscow, 1999), p.91. ([in Russian])

    Google Scholar 

  48. H.A. Bethe, Ann. Phys. 3(5), 133 (1929)

    Article  Google Scholar 

  49. V.D. Prozorovskii, IYu. Reshidova, Yu.S. Paranchich, Low Temp. Phys. 21, 813 (1995)

    ADS  Google Scholar 

  50. B. Bersuker, Electronic Structure and Properties of Transition Metal Compounds: Introduction to the Theory (Wiley, New York, 1996), p.759

    Google Scholar 

  51. J. Kyung, K.-L. Seong, M. NoSoung, Opt. Mater. Express 9, 2964 (2019)

    Article  ADS  Google Scholar 

  52. V.N. Vasyukov, V.V. Chabanenko, R.O. Kochkanyan, M.M. Nechitailov, A. Nabyalek, S. Piechota, H. Szymczak, Low Temp. Phys. 30, 956 (2004)

    Article  ADS  Google Scholar 

  53. J. Bailly, Physique 27, 335 (1966)

    Article  Google Scholar 

Download references

Acknowledgements

The work of Prof. N. Klyui was supported by the National Long-term Project No WQ20142200205 (Recruitment Program of Global Experts, PRC). The EPR measurements were taken within the SAFMAT infrastructure at FZU CAS. This research was supported by the Czech Science Foundation (GACR), Project No. 20-21069S. We acknowledge the Operational Program Research, Development and Education financed by European Structural and Investment Funds and the Czech Ministry of Education, Youth and Sports Project SOLID21 CZ.02.1.01/0.0/0.0/16_019/0000760. The authors are grateful to D. Savchenko for comments and discussion of the article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Lamonova.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lamonova, K., Orel, S., Pashkevich, Y. et al. Temperature-induced charge transfer in Fe-doped ZnSe single crystal: mechanism and features. Eur. Phys. J. Plus 137, 1018 (2022). https://doi.org/10.1140/epjp/s13360-022-03237-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-03237-x

Navigation