Skip to main content
Log in

Small accelerators and their applications in the CANAM research infrastructure at the NPI CAS

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The Nuclear Physics Institute (NPI) of the Czech Academy of Sciences (CAS) operates, among other facilities, a Tandetron linear accelerator, TR-24 and U-120M cyclotrons, and an MT25 microtron. A new accelerator mass spectrometry (AMS) instrument, MILEA, has recently been acquired. Except for the MT25, all facilities are synergic parts of the Centre of Accelerators and Nuclear Analytical Methods Research Infrastructure (CANAM RI) (http://canam.ujf.cas.cz). This paper demonstrates the instrumental, scientific and application capabilities of the devices for many fundamental nuclear physics experiments and a wide spectrum of applications. The Tandetron Laboratory has a full arsenal of ion-beam analytical methods, ion-beam nano- and microstructuring techniques, as well as tools for the doping and synthesis of new progressive materials using energetic ion beams. It uniquely utilises ion beams for 3D elemental mapping; it studies internal morphology using ion-microprobe methods applicable in many scientific branches. The TR-24 and U-120M cyclotrons provide the primary beams of accelerated ions as well as the generated secondary fast neutrons, including the necessary instrumentation and the target technology, and enable fundamental experiments in nuclear physics, astrophysics, dosimetry, etc. The microtron MT25 is a source of relativistic electrons (the primary electron beam), the secondary photon beam (bremsstrahlung) and neutrons from photonuclear reactions which are used, e.g. for analysis and preservation of cultural heritage. The MILEA AMS system offers a highly sensitive isotopic ratio measurement of very long-lived radionuclides at levels up to 10–15.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability Statement

There is no software code to be disclosed—standard commercial or academic freeware was used for data processing.

References

  1. A. Romanenko, V. Havránek, A. Macková, M. Davídková, M. Cutroneo, A.G. Ponomarev, G. Nagy, J.H. Stammers, I. Rajta, Rev. Sci. Instrum. 90, 013701 (2019)

    Article  ADS  Google Scholar 

  2. https://www.ionbeamcenters.eu/ion-beam-facilities/nuclear-physics-institute/

  3. J. Štursa, M. Čihák, M. Křivánek, J. Kučera, Cyclotrons. and App. 1998, 108–111 (1999)

    Google Scholar 

  4. G.G. Kiss, M. La Cognata, C. Spitaleri et al., Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy. Physics 807, 135606 (2020)

    Google Scholar 

  5. P. Reineck, L.F. Trindade, J. Havlik, J. Stursa, A. Hefferman, A. Elbourne, A. Orth, M. Capelli, P. Ciger, D.A. Simson, B.C. Gibson, Part. Part. Syst. Charact. 36(3), 1900009 (2019)

    Article  Google Scholar 

  6. J. Zhang, S.Q. Zhao, K. Zhang, J.Q. Zhou, Y.F. Cai, Nanoscale Res. Lett. 7, 405 (2012)

    Article  ADS  Google Scholar 

  7. V. Rodríguez-Iglesias, O. Peña-Rodríguez, H. G. Silva Pereyra, L. Rodríguez-Fernández, G. Kellermann, J. C. Cheang-Wong, A. C. Sosa, A. Oliver, J. Phys. Chem. C 114, 746 (2010).

  8. S. Rehman, R.G. Singh, J.C. Pivin, W. Bari, F. Singh, Vacuum 86, 87 (2011)

    Article  ADS  Google Scholar 

  9. P. Malinský, A. Romanenko, V. Havránek, J.H. Stammers, V. Hnatowicz, M. Cutroneo, J. Novák, P. Slepička, V. Švorčík, K. Szökölová, D. Bouša, Z. Sofer, A. Macková, Appl. Surf. Sci. 528, 146802 (2020)

    Article  Google Scholar 

  10. L. Giuntini, M. Massi, S. Calusi, L. Castelli, L. Carraresi, M.E. Fedi, N. Gelli, L. Liccioli, P.A. Mandò, A. Mazzinghi, L. Palla, F.P. Romano, C. Ruberto, F. Taccetti, Nucl. Instrum. Meth. B 348, 14 (2015)

    Article  ADS  Google Scholar 

  11. A. Macková, P. Malinský, A. Jagerová, R. Mikšová, Z. Sofer, K. Klímová, M. Mikulics, R. Böttger, S. Akhmadaliev, J. Oswald, Thin Solid Films 680, 102 (2019)

    Article  ADS  Google Scholar 

  12. A. Jagerová, P. Malinský, R. Mikšová, P. Nekvindová, J. Cajzl, S. Akhmadaliev, V. Holy, A. Macková, JVST A 37, 061406 (2019)

    ADS  Google Scholar 

  13. P. Nekvindová, J. Cajzl, A. Macková, P. Malinský, J. Oswald, R. Bottger, R. Yatskiv, J. Alloy. Compd. 816, 152455 (2020)

    Article  Google Scholar 

  14. M. Cutroneo, V. Havránek, A. Macková, P. Malinský, L. Torrisi, J. Lorinčík, J. Luxa, K. Szökölová, Z. Sofer, J.H. Stammers, Vacuum 163, 10–14 (2019)

    Article  ADS  Google Scholar 

  15. M. Cutroneo, V. Havránek, A. Macková, A. Torrisi, J. Flaks, P. Slepička, L. Torrisi, Nucl. Instrum. Meth. B 459, 137 (2019)

    Article  ADS  Google Scholar 

  16. J. Luxa, V. Mazánek, A. Macková, P. Malinský, S. Akhmadaliev, Z. Sofer, Appl. Mater. Today 14, 216 (2019)

    Article  Google Scholar 

  17. R. Mikšová, A. Macková, P. Malinský, NIM B 406, 179–184 (2017)

    Article  ADS  Google Scholar 

  18. A. Mackova, J. Kučera, J. Kameník, V. Havránek, K. Kranda, Nucl. Phys. News 27, 12 (2017)

    Article  Google Scholar 

  19. A. Macková, J. Kučera, J. Kameník, V. Havránek, Z. Smit, L. Giuntini, Zs. Kasztovszky, Nuovo Cimento della Societa Italiana di Fisica C 42, 53 (2019).

  20. V. Burjan, V. Hons, V. Kroha, J. Mrázek et al., Eur. Phys J. A 55, 114 (2019)

    Article  ADS  Google Scholar 

  21. K. Čubová, M. Semelová, M. Němec, J. John, J.P. Omtvedt et al., J. Radioanal. Nucl. Chem. 318(3), 2455 (2018)

    Article  Google Scholar 

  22. J. Červenák, O. Lebeda, Nucl. Intr. Meth. B 458, 118 (2019)

    Article  ADS  Google Scholar 

  23. L. Vyšín, K. Pachnerová Brabcová, V. Štěpán, P. Moretto-Capelle, B. Bugler, G. Legube, P. Cafarelli, R. Casta, J.P. Champeaux, M. Sence, M. Vlk, R. Wagner, J. Štursa, V. Zach, S. Incerti, L. Juha, M. Davídková, Radiat. Environ. Biophys. 54, 343 (2015).

  24. C. Granja, J. Jakubek, S. Polanský, V. Zach et al., Nucl. Instrum. Meth. A 908, 60 (2018)

    Article  ADS  Google Scholar 

  25. F. Křížek, J. Ferencei, T. Matlocha, J. Pospisil et al., Nucl. Instrum. Meth. A 894, 87 (2018)

    Article  ADS  Google Scholar 

  26. J. Štursa, J. Havlik, V. Petráková, M. Gulka et al., Carbon 96, 812 (2016)

    Article  Google Scholar 

  27. M. Aker, K. Altenmüller, M. Arenz et al., Phys. Rev. Let. 123, 221802 (2019)

    Article  ADS  Google Scholar 

  28. M. Štefánik, P. Bém, E. Šimečková, J. Štursa et al., Rad. Phys. And Chem. 167, 108552 (2020)

    Article  Google Scholar 

  29. M. Vognar, C. Šimáně, A. Burian et al., Nucl. Instr. Meth. A 380(3), 613 (1996)

    Article  ADS  Google Scholar 

  30. M. Králík, J. Solc, D. Chvátil et al., Rev. Sci. Instrum. 83(8), 083502 (2012)

    Article  ADS  Google Scholar 

  31. Z. Řanda, J. Kučera, J. Mizera, J. Frána, J. Radioanal. Nucl. Chem. 271, 589 (2007)

    Article  Google Scholar 

  32. C. Granja, K. Kudela, J. Jakubek et al., Nucl. Intrum. Meth. A 911, 142 (2018)

    Article  ADS  Google Scholar 

  33. H. Raabová, D. Chvátil, P. Cigler, Nanoscale 11(40), 18537 (2018)

    Article  Google Scholar 

  34. Y. Zhong, S. Lundemo, E.W.H. Jager, Smart Mater. Struct. 27, 074006 (2018)

    Article  ADS  Google Scholar 

  35. M. Čihák, J. Štursa, P. Krist, R. Běhal, et al., Cyclotrons, Cape Town, (2019)

  36. P. Bém, R. Běhal, J. Štursa, M. Štefánik, et al., EPJ Web of Conf. 231 (2020)

  37. A. Tumino et al., Astrophys J 785(2), 96 (2014)

    Article  ADS  Google Scholar 

  38. V. Burjan et al., Eur. Phys. J. A 55(7), 114 (2019)

    Article  ADS  Google Scholar 

  39. G. D’Agata et al., Phys. Rev. C 103(1), 015806 (2021)

    Article  ADS  Google Scholar 

  40. I. Krausová, J. Tajer, I. Světlík et al., Nucl. Intrum. Meth. B 448, 26 (2019)

    Article  ADS  Google Scholar 

  41. P. Zajíček, M. Golec, I. Světlík, Vesmír 98, 588 (2019). ((in Czech))

    Google Scholar 

  42. T. Prášek, M. Němec, P. Steier et al., Nucl. Instrum. Meth. B 472, 64 (2020)

    Article  ADS  Google Scholar 

Download references

Funding

The research has been carried out at the CANAM (Centre of Accelerators and Nuclear Analytical Methods) infrastructure supported by the MEYS, Czech Republic, under the project LM 2015056. This publication has been supported by the OP RDE, MEYS, Czech Republic under the project CANAM OP (CZ.02.1.01/0.0/0.0/16_013/0001812), by the Czech Science Foundation (GACR No. 19-02482S) and by the OP VVV, MEYS, Czech Republic under the project RAMSES (CZ.02.1.01/0.0/0.0/16_019/0000728). The astrophysical experiments were supported by the project SPIRAL2-CZ, EF16_013/0001679.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Macková.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose. The authors have no conflicts of interest to declare that are relevant to the content of this article. All authors certify that they have no affiliations with or involvement in any organisation or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript. The authors have no financial or proprietary interests in any material discussed in this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Macková, A., Malinský, P., Cutroneo, M. et al. Small accelerators and their applications in the CANAM research infrastructure at the NPI CAS. Eur. Phys. J. Plus 136, 558 (2021). https://doi.org/10.1140/epjp/s13360-021-01430-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01430-y

Navigation