Skip to main content
Log in

Status and initial physics performance studies of the MPD experiment at NICA

  • Review
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

The Nuclotron-based Ion Collider fAcility (NICA) is under construction at the Joint Institute for Nuclear Research (JINR), with commissioning of the facility expected in late 2022. The Multi-Purpose Detector (MPD) has been designed to operate at NICA and its components are currently in production. The detector is expected to be ready for data taking with the first beams from NICA. This document provides an overview of the landscape of the investigation of the QCD phase diagram in the region of maximum baryonic density, where NICA and MPD will be able to provide significant and unique input. It also provides a detailed description of the MPD set-up, including its various subsystems as well as its support and computing infrastructures. Selected performance studies for particular physics measurements at MPD are presented and discussed in the context of existing data and theoretical expectations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39
Fig. 40
Fig. 41
Fig. 42
Fig. 43
Fig. 44
Fig. 45
Fig. 46
Fig. 47
Fig. 48
Fig. 49
Fig. 50
Fig. 51
Fig. 52
Fig. 53
Fig. 54
Fig. 55
Fig. 56
Fig. 57
Fig. 58
Fig. 59
Fig. 60
Fig. 61
Fig. 62
Fig. 63
Fig. 64
Fig. 65
Fig. 66
Fig. 67

Similar content being viewed by others

Data Availability

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: Since the experiment is still at its assembly stage, there is not yet any data available and the studies hereby shown are only at the simulation level.]

References

  1. A. Bazavov et al., Phys. Lett. B 795, 15 (2019). https://doi.org/10.1016/j.physletb.2019.05.013

    Article  ADS  MathSciNet  Google Scholar 

  2. Y. Aoki, G. Endrodi, Z. Fodor, S.D. Katz, K.K. Szabo, Nature 443, 675 (2006). https://doi.org/10.1038/nature05120

    Article  ADS  Google Scholar 

  3. T. Mendenhall, Z.W. Lin, Phys. Rev. C 103(2), 024907 (2021). https://doi.org/10.1103/PhysRevC.103.024907

    Article  ADS  Google Scholar 

  4. A. Ayala, L.A. Hernández, M. Loewe, J.C. Rojas, R. Zamora, Eur. Phys. J. A 56(2), 71 (2020). https://doi.org/10.1140/epja/s10050-020-00086-z

    Article  ADS  Google Scholar 

  5. M. Asakawa, K. Yazaki, Nucl. Phys. A 504, 668 (1989). https://doi.org/10.1016/0375-9474(89)90002-X

    Article  Google Scholar 

  6. A. Ayala, A. Bashir, J.J. Cobos-Martinez, S. Hernandez-Ortiz, A. Raya, Nucl. Phys. B 897, 77 (2015). https://doi.org/10.1016/j.nuclphysb.2015.05.014

    Article  ADS  Google Scholar 

  7. A. Ayala, S. Hernandez-Ortiz, L.A. Hernandez, Rev. Mex. Fis. 64(3), 302 (2018). https://doi.org/10.31349/RevMexFis.64.302

    Article  Google Scholar 

  8. M.A. Stephanov, PoS LAT2006, 024 (2006). https://doi.org/10.22323/1.032.0024

    Article  Google Scholar 

  9. H.T. Ding, F. Karsch, S. Mukherjee, Int. J. Mod. Phys. E 24(10), 1530007 (2015). https://doi.org/10.1142/S0218301315300076

    Article  ADS  Google Scholar 

  10. S. Sharma, Nucl. Phys. A 967, 728 (2017). https://doi.org/10.1016/j.nuclphysa.2017.05.008

    Article  ADS  Google Scholar 

  11. H.T. Ding et al., Phys. Rev. Lett. 123(6), 062002 (2019). https://doi.org/10.1103/PhysRevLett.123.062002

    Article  ADS  MathSciNet  Google Scholar 

  12. A.Y. Kotov, M.P. Lombardo, A. Trunin, Phys. Lett. B 823, 136749 (2021). https://doi.org/10.1016/j.physletb.2021.136749

    Article  Google Scholar 

  13. C. Schmidt, J. Goswami, G. Nicotra, F. Ziesché, P. Dimopoulos, F. Di Renzo, S. Singh, K. Zambello, Acta Phys. Pol. B Proc. Suppl. 14, 241 (2021). https://doi.org/10.5506/APhysPolBSupp.14.241

    Article  Google Scholar 

  14. J. Cleymans, H. Oeschler, K. Redlich, S. Wheaton, Phys. Rev. C 73, 034905 (2006). https://doi.org/10.1103/PhysRevC.73.034905

    Article  ADS  Google Scholar 

  15. A. Andronic, P. Braun-Munzinger, K. Redlich, J. Stachel, Nature 561(7723), 321 (2018). https://doi.org/10.1038/s41586-018-0491-6

    Article  ADS  Google Scholar 

  16. P. Senger, Phys. Scr. 96(5), 054002 (2021). https://doi.org/10.1088/1402-4896/abebfe

    Article  ADS  Google Scholar 

  17. M.G. Alford, K. Rajagopal, F. Wilczek, Phys. Lett. B 422, 247 (1998). https://doi.org/10.1016/S0370-2693(98)00051-3

    Article  ADS  Google Scholar 

  18. R. Rapp, T. Schäfer, E.V. Shuryak, M. Velkovsky, Phys. Rev. Lett. 81, 53 (1998). https://doi.org/10.1103/PhysRevLett.81.53

    Article  ADS  Google Scholar 

  19. J. Berges, K. Rajagopal, Nucl. Phys. B 538, 215 (1999). https://doi.org/10.1016/S0550-3213(98)00620-8

    Article  ADS  Google Scholar 

  20. D.B. Blaschke, F. Sandin, V.V. Skokov, S. Typel, Acta Phys. Polon. Suppl. 3, 741 (2010)

    Google Scholar 

  21. T. Hatsuda, M. Tachibana, N. Yamamoto, G. Baym, Phys. Rev. Lett. 97, 122001 (2006). https://doi.org/10.1103/PhysRevLett.97.122001

    Article  ADS  Google Scholar 

  22. B.P. Abbott et al., Phys. Rev. Lett. 119(16), 161101 (2017). https://doi.org/10.1103/PhysRevLett.119.161101

    Article  ADS  Google Scholar 

  23. B.P. Abbott et al., Astrophys. J. 848(2), L12 (2017). https://doi.org/10.3847/2041-8213/aa91c9

    Article  ADS  Google Scholar 

  24. S. Blacker, N.U.F. Bastian, A. Bauswein, D.B. Blaschke, T. Fischer, M. Oertel, T. Soultanis, S. Typel, Phys. Rev. D 102(12), 123023 (2020). https://doi.org/10.1103/PhysRevD.102.123023

    Article  ADS  Google Scholar 

  25. E.R. Most, L. Jens Papenfort, V. Dexheimer, M. Hanauske, H. Stoecker, L. Rezzolla, Eur. Phys. J. A 56(2), 59 (2020). https://doi.org/10.1140/epja/s10050-020-00073-4

    Article  ADS  Google Scholar 

  26. T. Klähn, D. Blaschke, F. Weber, Phys. Part. Nucl. Lett. 9, 484 (2012). https://doi.org/10.1134/S1547477112060118

    Article  Google Scholar 

  27. D. Blaschke, D.E. Alvarez-Castillo, S. Benic, PoS CPOD2013, 063 (2013). https://doi.org/10.22323/1.185.0063

    Article  Google Scholar 

  28. A. Bauswein, N.U.F. Bastian, D.B. Blaschke, K. Chatziioannou, J.A. Clark, T. Fischer, M. Oertel, Phys. Rev. Lett. 122(6), 061102 (2019). https://doi.org/10.1103/PhysRevLett.122.061102

    Article  ADS  Google Scholar 

  29. P. Napolitani, M. Colonna, F. Gulminelli, E. Galichet, S. Piantelli, G. Verde, E. Vient, Phys. Rev. C 81, 044619 (2010). https://doi.org/10.1103/PhysRevC.81.044619

    Article  ADS  Google Scholar 

  30. B.B. Brandt, G. Endrodi, S. Schmalzbauer, EPJ Web Conf. 175, 07020 (2018). https://doi.org/10.1051/epjconf/201817507020

    Article  Google Scholar 

  31. A.B. Migdal, Rev. Mod. Phys. 50, 107 (1978). https://doi.org/10.1103/RevModPhys.50.107

    Article  ADS  Google Scholar 

  32. V. Ruck, M. Gyulassy, W. Greiner, Z. Phys. A 277, 391 (1976). https://doi.org/10.1007/BF01545977

    Article  ADS  Google Scholar 

  33. T. Khunjua, K. Klimenko, R. Zhokhov, Symmetry 11(6), 778 (2019). https://doi.org/10.3390/sym11060778

    Article  Google Scholar 

  34. NUPECC. Long range plan. http://www.nupecc.org/lrp2016/Documents/lrp2017.pdf (2017). Accessed: 2021-01-20

  35. A. Andronic et al., Nucl. Phys. A 837, 65 (2010). https://doi.org/10.1016/j.nuclphysa.2010.02.005

    Article  ADS  Google Scholar 

  36. J. Randrup, J. Cleymans, Phys. Rev. C 74, 047901 (2006). https://doi.org/10.1103/PhysRevC.74.047901

    Article  ADS  Google Scholar 

  37. P. Braun-Munzinger, J. Stachel, J.P. Wessels, N. Xu, Phys. Lett. B 344, 43 (1995). https://doi.org/10.1016/0370-2693(94)01534-J

    Article  ADS  Google Scholar 

  38. A. Andronic, P. Braun-Munzinger, J. Stachel, Nucl. Phys. A 772, 167 (2006). https://doi.org/10.1016/j.nuclphysa.2006.03.012

    Article  ADS  Google Scholar 

  39. M. Asakawa, M. Kitazawa, Prog. Part. Nucl. Phys. 90, 299 (2016). https://doi.org/10.1016/j.ppnp.2016.04.002

    Article  ADS  Google Scholar 

  40. M.A. Stephanov, Phys. Rev. Lett. 102, 032301 (2009). https://doi.org/10.1103/PhysRevLett.102.032301

    Article  ADS  Google Scholar 

  41. O. Rogachevsky, A. Sorin, O. Teryaev, Phys. Rev. C 82, 054910 (2010). https://doi.org/10.1103/PhysRevC.82.054910

    Article  ADS  Google Scholar 

  42. Y.B. Ivanov, A.A. Soldatov, Phys. Rev. C 97(4), 044915 (2018). https://doi.org/10.1103/PhysRevC.97.044915

    Article  ADS  Google Scholar 

  43. L. Adamczyk et al., Nature 548, 62 (2017). https://doi.org/10.1038/nature23004

    Article  ADS  Google Scholar 

  44. A. Ayala et al., Phys. Lett. B 810, 135818 (2020). https://doi.org/10.1016/j.physletb.2020.135818

    Article  Google Scholar 

  45. A. Ayala, I. Domínguez, I. Maldonado, M.E. Tejeda-Yeomans, Phys. Rev. C 105(3), 034907 (2022). https://doi.org/10.1103/PhysRevC.105.034907

    Article  ADS  Google Scholar 

  46. V. Skokov, A.Y. Illarionov, V. Toneev, Int. J. Mod. Phys. A 24, 5925 (2009). https://doi.org/10.1142/S0217751X09047570

    Article  ADS  Google Scholar 

  47. A.N. Tawfik, Indian J. Phys. 91(1), 93 (2017). https://doi.org/10.1007/s12648-016-0901-2

    Article  ADS  Google Scholar 

  48. Z.B. Ma, C.S. Gao, Chin. Phys. Lett. 23, 568 (2006). https://doi.org/10.1088/0256-307X/23/3/012

    Article  ADS  Google Scholar 

  49. D. Blaschke, G. Röpke, Y. Ivanov, M. Kozhevnikova, S. Liebing, Springer Proc. Phys. 250, 183 (2020). https://doi.org/10.1007/978-3-030-53448-6_27

    Article  Google Scholar 

  50. J. Mohs, M. Ege, H. Elfner, M. Mayer, Phys. Rev. C 105(3), 034906 (2022). https://doi.org/10.1103/PhysRevC.105.034906

  51. L. Adamczyk et al., Phys. Rev. C 96(4), 044904 (2017). https://doi.org/10.1103/PhysRevC.96.044904

    Article  ADS  Google Scholar 

  52. A. Andronic, Int. J. Mod. Phys. A 29, 1430047 (2014). https://doi.org/10.1142/S0217751X14300476

    Article  ADS  Google Scholar 

  53. S.V. Afanasiev et al., Phys. Rev. C 66, 054902 (2002). https://doi.org/10.1103/PhysRevC.66.054902

    Article  ADS  Google Scholar 

  54. J. Cleymans, H. Oeschler, K. Redlich, S. Wheaton, Phys. Lett. B 615, 50 (2005). https://doi.org/10.1016/j.physletb.2005.03.074

    Article  ADS  Google Scholar 

  55. M. Gazdzicki, Eur. Phys. J. ST 229(22–23), 3507 (2020). https://doi.org/10.1140/epjst/e2020-000090-9

    Article  Google Scholar 

  56. C. Alt et al., Phys. Rev. C 77, 024903 (2008). https://doi.org/10.1103/PhysRevC.77.024903

    Article  ADS  Google Scholar 

  57. W. Busza, K. Rajagopal, W. van der Schee, Annu. Rev. Nucl. Part. Sci. 68, 339 (2018). https://doi.org/10.1146/annurev-nucl-101917-020852

    Article  ADS  Google Scholar 

  58. R. Snellings, J. Phys. G 41(12), 124007 (2014). https://doi.org/10.1088/0954-3899/41/12/124007

    Article  ADS  Google Scholar 

  59. R.A. Lacey, Nucl. Phys. A 774, 199 (2006). https://doi.org/10.1016/j.nuclphysa.2006.06.041

    Article  ADS  Google Scholar 

  60. S. Voloshin, Y. Zhang, Z. Phys. C 70, 665 (1996). https://doi.org/10.1007/s002880050141

    Article  Google Scholar 

  61. C. Gale, S. Jeon, B. Schenke, P. Tribedy, R. Venugopalan, Phys. Rev. Lett. 110(1), 012302 (2013). https://doi.org/10.1103/PhysRevLett.110.012302

    Article  ADS  Google Scholar 

  62. U. Heinz, R. Snellings, Annu. Rev. Nucl. Part. Sci. 63, 123 (2013). https://doi.org/10.1146/annurev-nucl-102212-170540

    Article  ADS  Google Scholar 

  63. J.E. Bernhard, J.S. Moreland, S.A. Bass, Nat. Phys. 15(11), 1113 (2019). https://doi.org/10.1038/s41567-019-0611-8

    Article  Google Scholar 

  64. H. Stoecker, Nucl. Phys. A 750, 121 (2005). https://doi.org/10.1016/j.nuclphysa.2004.12.074

    Article  ADS  Google Scholar 

  65. D.H. Rischke, Nucl. Phys. A 610, 88C (1996). https://doi.org/10.1016/S0375-9474(96)00345-4

  66. P. Batyuk, D. Blaschke, M. Bleicher, Y.B. Ivanov, I. Karpenko, S. Merts, M. Nahrgang, H. Petersen, O. Rogachevsky, Phys. Rev. C 94, 044917 (2016). https://doi.org/10.1103/PhysRevC.94.044917

    Article  ADS  Google Scholar 

  67. S. Singha, P. Shanmuganathan, D. Keane, Adv. High Energy Phys. 2016, 2836989 (2016). https://doi.org/10.1155/2016/2836989

    Article  Google Scholar 

  68. M. Abdallah et al., Phys. Lett. B 827, 136941 (2022). https://doi.org/10.1016/j.physletb.2022.136941

    Article  Google Scholar 

  69. D. Keane, J. Phys. Conf. Ser. 878(1), 012015 (2017). https://doi.org/10.1088/1742-6596/878/1/012015

    Article  Google Scholar 

  70. A. Taranenko, EPJ Web Conf. 204, 03009 (2019). https://doi.org/10.1051/epjconf/201920403009

    Article  Google Scholar 

  71. L. Adamczyk et al., Phys. Rev. C 86, 054908 (2012). https://doi.org/10.1103/PhysRevC.86.054908

    Article  ADS  Google Scholar 

  72. L. Adamczyk et al., Phys. Rev. C 93(1), 014907 (2016). https://doi.org/10.1103/PhysRevC.93.014907

    Article  ADS  Google Scholar 

  73. J. Auvinen, H. Petersen, Phys. Rev. C 88(6), 064908 (2013). https://doi.org/10.1103/PhysRevC.88.064908

    Article  ADS  Google Scholar 

  74. I. Karpenko, P. Huovinen, M. Bleicher, Comput. Phys. Commun. 185, 3016 (2014). https://doi.org/10.1016/j.cpc.2014.07.010

    Article  ADS  Google Scholar 

  75. A. Taranenko, P. Parfenov, A. Truttse, Phys. Part. Nucl. 51(3), 309 (2020). https://doi.org/10.1134/S1063779620030296

    Article  Google Scholar 

  76. P. Parfenov, A. Taranenko, D. Idrisov, V.B. Luong, N. Geraksiev, A. Demanov, A. Povarov, V. Kireyeu, A. Truttse, E. Volodihin, (2020). arXiv:2012.06763 [hep-ex]

  77. M. Bleicher et al., J. Phys. G 25, 1859 (1999). https://doi.org/10.1088/0954-3899/25/9/308

    Article  ADS  Google Scholar 

  78. S.A. Bass et al., Prog. Part. Nucl. Phys. 41, 255 (1998). https://doi.org/10.1016/S0146-6410(98)00058-1

    Article  ADS  Google Scholar 

  79. J. Weil et al., Phys. Rev. C 94(5), 054905 (2016). https://doi.org/10.1103/PhysRevC.94.054905

    Article  ADS  Google Scholar 

  80. Y. Nara, EPJ Web Conf. 208, 11004 (2019). https://doi.org/10.1051/epjconf/201920811004

    Article  Google Scholar 

  81. Z.W. Lin, C.M. Ko, B.A. Li, B. Zhang, S. Pal, Phys. Rev. C 72, 064901 (2005). https://doi.org/10.1103/PhysRevC.72.064901

    Article  ADS  Google Scholar 

  82. J. Adam et al., Phys. Rev. C 103(3), 034908 (2021). https://doi.org/10.1103/PhysRevC.103.034908

    Article  ADS  Google Scholar 

  83. J. Adamczewski-Musch et al., Phys. Lett. B 795, 446 (2019). https://doi.org/10.1016/j.physletb.2019.06.047

    Article  ADS  Google Scholar 

  84. G.I. Kopylov, M.I. Podgoretsky, Sov. J. Nucl. Phys. 15, 219 (1972) [Yad. Fiz. 15, 392 (1972)]

  85. G.I. Kopylov, M.I. Podgoretsky, Zh. Eksp. Teor. Fiz. 69, 414 (1975)

  86. M.I. Podgoretsky, Fiz. Elem. Chast. Atom. Yadra 20, 628 (1989)

    Google Scholar 

  87. R. Lednicky, Phys. Atom. Nucl. 67, 72 (2004). https://doi.org/10.1134/1.1644010 [Yad. Fiz. 67, 73 (2004)]

  88. S. Pratt, Phys. Rev. Lett. 53, 1219 (1984). https://doi.org/10.1103/PhysRevLett.53.1219

  89. M.A. Lisa, S. Pratt, R. Soltz, U. Wiedemann, Annu. Rev. Nucl. Part. Sci. 55, 357 (2005). https://doi.org/10.1146/annurev.nucl.55.090704.151533

    Article  ADS  Google Scholar 

  90. C. Adler et al., Phys. Rev. Lett. 87, 082301 (2001). https://doi.org/10.1103/PhysRevLett.87.082301

    Article  ADS  Google Scholar 

  91. K. Aamodt et al., Phys. Rev. D 82, 052001 (2010). https://doi.org/10.1103/PhysRevD.82.052001

    Article  ADS  Google Scholar 

  92. K. Aamodt et al., Phys. Lett. B 696, 328 (2011). https://doi.org/10.1016/j.physletb.2010.12.053

    Article  Google Scholar 

  93. K. Aamodt et al., Phys. Rev. D 84, 112004 (2011). https://doi.org/10.1103/PhysRevD.84.112004

    Article  ADS  Google Scholar 

  94. B.B. Abelev et al., Phys. Rev. C 89(2), 024911 (2014). https://doi.org/10.1103/PhysRevC.89.024911

    Article  ADS  Google Scholar 

  95. B.B. Abelev et al., Phys. Lett. B 739, 139 (2014). https://doi.org/10.1016/j.physletb.2014.10.034

    Article  ADS  Google Scholar 

  96. J. Adam et al., Phys. Rev. C 91, 034906 (2015). https://doi.org/10.1103/PhysRevC.91.034906

    Article  ADS  Google Scholar 

  97. J. Adam et al., Phys. Rev. C 92(5), 054908 (2015). https://doi.org/10.1103/PhysRevC.92.054908

    Article  ADS  Google Scholar 

  98. J. Adam et al., Phys. Rev. C 93(2), 024905 (2016). https://doi.org/10.1103/PhysRevC.93.024905

    Article  ADS  Google Scholar 

  99. D. Adamova et al., Phys. Rev. Lett. 118(22), 222301 (2017). https://doi.org/10.1103/PhysRevLett.118.222301

    Article  ADS  Google Scholar 

  100. S. Acharya et al., Phys. Lett. B 785, 320 (2018). https://doi.org/10.1016/j.physletb.2018.06.042

    Article  ADS  Google Scholar 

  101. J. Adams et al., Phys. Rev. Lett. 91, 262301 (2003). https://doi.org/10.1103/PhysRevLett.91.262301

    Article  ADS  Google Scholar 

  102. J. Adams et al., Phys. Rev. C 71, 044906 (2005). https://doi.org/10.1103/PhysRevC.71.044906

    Article  ADS  Google Scholar 

  103. B.I. Abelev et al., Phys. Rev. C 81, 024911 (2010). https://doi.org/10.1103/PhysRevC.81.024911

    Article  ADS  Google Scholar 

  104. B.I. Abelev et al., Phys. Rev. C 80, 024905 (2009). https://doi.org/10.1103/PhysRevC.80.024905

    Article  ADS  Google Scholar 

  105. M.M. Aggarwal et al., Phys. Rev. C 83, 064905 (2011). https://doi.org/10.1103/PhysRevC.83.064905

    Article  ADS  Google Scholar 

  106. L. Adamczyk et al., Phys. Rev. C 92(1), 014904 (2015). https://doi.org/10.1103/PhysRevC.92.014904

    Article  ADS  Google Scholar 

  107. P. Batyuk, I. Karpenko, R. Lednicky, L. Malinina, K. Mikhaylov, O. Rogachevsky, D. Wielanek, Phys. Rev. C 96(2), 024911 (2017). https://doi.org/10.1103/PhysRevC.96.024911

    Article  ADS  Google Scholar 

  108. D. Wielanek, P. Batyuk, R. Lednicky, O. Rogachevsky, I. Karpenko, L. Malinina, K. Mikhaylov, Acta Phys. Polon. Suppl. 9, 341 (2016). https://doi.org/10.5506/APhysPolBSupp.9.341

    Article  Google Scholar 

  109. Y.M. Sinyukov, Nucl. Phys. A 566, 589C (1994). https://doi.org/10.1016/0375-9474(94)90700-5

    Article  ADS  Google Scholar 

  110. Y.M. Sinyukov, I.A. Karpenko, Phys. Part. Nucl. Lett. 8(9), 896 (2011). https://doi.org/10.1134/S1547477111090329

    Article  Google Scholar 

  111. R.A. Lacey, Nucl. Phys. A 956, 348 (2016). https://doi.org/10.1016/j.nuclphysa.2016.01.032

    Article  ADS  Google Scholar 

  112. M. Stepanov, Phys. Rev. Lett. 102, 032301 (2009). https://doi.org/10.1103/PhysRevLett.102.032301

    Article  ADS  Google Scholar 

  113. F. Karsch, K. Redlich, Phys. Lett. B 695, 136 (2011). https://doi.org/10.1016/j.physletb.2010.10.046

    Article  ADS  Google Scholar 

  114. B. Mohanty, N. Xu, in Criticality in QCD and the Hadron Resonance Gas (2021)

  115. C. Alt et al., Phys. Rev. C 79, 044910 (2009)

    Article  ADS  Google Scholar 

  116. T. Anticic et al., Phys. Rev. C 92, 044905 (2015)

    Article  ADS  Google Scholar 

  117. T. Anticic et al., Eur. Phys. J. C 75, 587 (2015)

    Article  ADS  Google Scholar 

  118. A. Adare et al., Phys. Rev. C 93, 011901(R) (2016)

    Article  ADS  Google Scholar 

  119. A. Adamczyk et al., Phys. Lett. B 785, 551 (2018)

    Article  ADS  Google Scholar 

  120. A. Aduszkiewicz et al., Eur. Phys. J. C 76(11), 635 (2016). https://doi.org/10.1140/epjc/s10052-016-4450-9

    Article  ADS  Google Scholar 

  121. J. Adam et al., Phys. Rev. Lett. 126(9), 092301 (2021). https://doi.org/10.1103/PhysRevLett.126.092301

    Article  ADS  Google Scholar 

  122. P. Koch, B. Müller, J. Rafelski, Phys. Rep. 142, 167 (1986). https://doi.org/10.1016/0370-1573(86)90096-7

    Article  ADS  Google Scholar 

  123. J. Adam et al., Phys. Lett. B 758, 389 (2016). https://doi.org/10.1016/j.physletb.2016.05.027

    Article  ADS  Google Scholar 

  124. G. Agakishiev et al., Phys. Rev. Lett. 108, 072301 (2012). https://doi.org/10.1103/PhysRevLett.108.072301

    Article  ADS  Google Scholar 

  125. M.M. Aggarwal et al., Phys. Rev. C 83, 024901 (2011). https://doi.org/10.1103/PhysRevC.83.024901

    Article  ADS  Google Scholar 

  126. B.I. Abelev et al., Phys. Rev. C 77, 044908 (2008). https://doi.org/10.1103/PhysRevC.77.044908

    Article  ADS  Google Scholar 

  127. V. Vislavicius, A. Kalweit (2020). arXiv:1610.03001 [nucl-ex]

  128. J. Adam et al., Phys. Rev. C 95(6), 064606 (2017). https://doi.org/10.1103/PhysRevC.95.064606

    Article  ADS  Google Scholar 

  129. B.B. Abelev et al., Phys. Rev. C 91, 024609 (2015). https://doi.org/10.1103/PhysRevC.91.024609

    Article  ADS  Google Scholar 

  130. A. Adare et al., Phys. Rev. C 83, 024909 (2011). https://doi.org/10.1103/PhysRevC.83.024909

    Article  ADS  Google Scholar 

  131. A. Adare et al., Phys. Rev. C 90(5), 054905 (2014). https://doi.org/10.1103/PhysRevC.90.054905

    Article  ADS  Google Scholar 

  132. S. Acharya et al., Phys. Rev. C 99(6), 064901 (2019). https://doi.org/10.1103/PhysRevC.99.064901

    Article  ADS  Google Scholar 

  133. J. Adams et al., Phys. Rev. C 71, 064902 (2005). https://doi.org/10.1103/PhysRevC.71.064902

    Article  ADS  Google Scholar 

  134. B.I. Abelev et al., Phys. Rev. Lett. 97, 132301 (2006). https://doi.org/10.1103/PhysRevLett.97.132301

    Article  ADS  Google Scholar 

  135. S. Acharya et al., Phys. Rev. C 99, 024905 (2019). https://doi.org/10.1103/PhysRevC.99.024905

    Article  ADS  Google Scholar 

  136. J. Adams et al., Phys. Lett. B 612, 181 (2005). https://doi.org/10.1016/j.physletb.2004.12.082

    Article  ADS  Google Scholar 

  137. S.S. Adler et al., Phys. Rev. C 72, 014903 (2005). https://doi.org/10.1103/PhysRevC.72.014903

    Article  ADS  Google Scholar 

  138. S. Acharya et al., Phys. Lett. B 802, 135225 (2020). https://doi.org/10.1016/j.physletb.2020.135225

    Article  Google Scholar 

  139. A. Adare et al., Phys. Rev. C 93(2), 024901 (2016). https://doi.org/10.1103/PhysRevC.93.024901

    Article  ADS  Google Scholar 

  140. D. Ivanishchev, D. Kotov, M. Malaev, V. Riabov, Y. Ryabov, J. Phys. Conf. Ser. 1400(5), 055051 (2019). https://doi.org/10.1088/1742-6596/1400/5/055051

    Article  Google Scholar 

  141. D. Ivanishchev, D. Kotov, E. Kryshen, M. Malaev, V. Riabov, Y. Ryabov, EPJ Web Conf. 222, 02005 (2019). https://doi.org/10.1051/epjconf/201922202005

    Article  Google Scholar 

  142. S. Borsanyi, Z. Fodor, C. Hoelbling, S.D. Katz, S. Krieg, C. Ratti, K.K. Szabo, JHEP 09, 073 (2010). https://doi.org/10.1007/JHEP09(2010)073

    Article  ADS  Google Scholar 

  143. R. Rapp, H. van Hees, Phys. Lett. B 753, 586 (2016). https://doi.org/10.1016/j.physletb.2015.12.065

    Article  ADS  Google Scholar 

  144. R. Rapp, J. Wambach, H. van Hees, Landolt-Bornstein 23, 134 (2010). https://doi.org/10.1007/978-3-642-01539-7_6

    Article  ADS  Google Scholar 

  145. I. Tserruya, Landolt-Bornstein 23, 176 (2010). https://doi.org/10.1007/978-3-642-01539-7_7

    Article  ADS  Google Scholar 

  146. R. Arnaldi et al., Eur. Phys. J. C 61, 711 (2009). https://doi.org/10.1140/epjc/s10052-009-0878-5

    Article  ADS  Google Scholar 

  147. D. Adamova et al., Phys. Lett. B 666, 425 (2008). https://doi.org/10.1016/j.physletb.2008.07.104

    Article  ADS  Google Scholar 

  148. L. Adamczyk et al., Phys. Rev. C 92(2), 024912 (2015). https://doi.org/10.1103/PhysRevC.92.024912

    Article  ADS  Google Scholar 

  149. J. Adam, et al., (2018). arXiv:1810.10159 [nucl-ex]

  150. G. Agakichiev et al., Phys. Rev. Lett. 75, 1272 (1995). https://doi.org/10.1103/PhysRevLett.75.1272

    Article  ADS  Google Scholar 

  151. L. Adamczyk et al., Phys. Rev. C 92(2), 024912 (2015). https://doi.org/10.1103/PhysRevC.92.024912

    Article  ADS  Google Scholar 

  152. A. Adare et al., Phys. Rev. C 93(1), 014904 (2016). https://doi.org/10.1103/PhysRevC.93.014904

    Article  ADS  Google Scholar 

  153. J. Adamczewski-Musch et al., Nat. Phys. 15(10), 1040 (2019). https://doi.org/10.1038/s41567-019-0583-8

    Article  Google Scholar 

  154. I. Tserruya, Nucl. Phys. A 590, 127C (1995). https://doi.org/10.1016/0375-9474(95)00231-O

    Article  ADS  Google Scholar 

  155. A. Adare et al., Phys. Rev. Lett. 104, 132301 (2010). https://doi.org/10.1103/PhysRevLett.104.132301

    Article  ADS  Google Scholar 

  156. L. Adamczyk et al., Phys. Lett. B 770, 451 (2017). https://doi.org/10.1016/j.physletb.2017.04.050

    Article  ADS  Google Scholar 

  157. J. Adam et al., Phys. Lett. B 754, 235 (2016). https://doi.org/10.1016/j.physletb.2016.01.020

    Article  ADS  Google Scholar 

  158. R. Albrecht et al., Phys. Rev. Lett. 76, 3506 (1996). https://doi.org/10.1103/PhysRevLett.76.3506

    Article  ADS  Google Scholar 

  159. M.M. Aggarwal et al., Phys. Rev. Lett. 85, 3595 (2000). https://doi.org/10.1103/PhysRevLett.85.3595

    Article  ADS  Google Scholar 

  160. A. Adare et al., Phys. Rev. Lett. 109, 122302 (2012). https://doi.org/10.1103/PhysRevLett.109.122302

    Article  ADS  Google Scholar 

  161. A. Adare et al., Phys. Rev. C 94(6), 064901 (2016). https://doi.org/10.1103/PhysRevC.94.064901

    Article  ADS  Google Scholar 

  162. S. Acharya et al., Phys. Lett. B 789, 308 (2019). https://doi.org/10.1016/j.physletb.2018.11.039

    Article  ADS  Google Scholar 

  163. MPD Technical Design Reports. http://mpd.jinr.ru/doc/mpd-tdr/

  164. R. Früwirth, Nucl. Instrum. Meth. A262, 444 (1987)

    Article  ADS  Google Scholar 

  165. R. Luchsinger, C. Grab, Comp. Phys. Commun. 76, 263 (1993)

    Article  ADS  Google Scholar 

  166. K. Gertsenberger, S. Merts, O. Rogachevsky, A. Zinchenko, Eur. Phys. J. A 52, 214 (2016)

    Article  ADS  Google Scholar 

  167. V.I. Zherebchevsky, V.P. Kondratiev, V.V. Vechernin, S.N. Igolkin, Nucl. Instrum. Meth. A 985, 164668 (2021). https://doi.org/10.1016/j.nima.2020.164668

    Article  Google Scholar 

  168. V. Kolesnikov, A. Mudrokh, V. Vasendina, A. Zinchenko, Phys. Part. Nucl. Lett. 16, 6 (2019)

    Article  Google Scholar 

  169. V.A. Babkin et al., JINST 11(06), C06007 (2016). https://doi.org/10.1088/1748-0221/11/06/C06007

    Article  Google Scholar 

  170. J. Christiansen. Hpdtc user manual v2.2. https://cds.cern.ch/record/1067476/files/cer-002723234.pdf (2004)

  171. M. Mager, Nucl. Instrum. Meth. A 824, 434 (2016). https://doi.org/10.1016/j.nima.2015.09.057

    Article  ADS  Google Scholar 

  172. ALICE-Collaboration, Expression of interest for an alice its upgrade in ls3. https://cds.cern.ch/record/2644611/files/ITS3%20EoI.1.pdf (2018)

  173. A.I. Zinchenko, S.N. Igolkin, V.P. Kondratiev, Y.A. Murin, Phys. Part. Nucl. Lett. 17(6), 856 (2020). https://doi.org/10.1134/S1547477120060114

    Article  Google Scholar 

  174. D. Zinchenko, A. Zinchenko, E. Nikonov, Phys. Part. Nucl. Lett. 18(1), 107 (2021). https://doi.org/10.1134/S1547477121010131

    Article  Google Scholar 

  175. R.A. Kado, M.A. Hernández, A. Ayala, M.A. Torres, W. Bietenholz, D. Chaires, E. Cuautle, I. Domínguez, A. Guirado, I. Maldonado, J. Maldonado, E. Moreno-Barbosa, P. Nieto-Marín, M.P. Salazar, L. Rebolledo, M. Rodríguez-Cahuantzi, D. Rodríguez-Figueroa, V. Reyna-Ortiz, G. Tejeda-Muñoz, M. Tejeda-Yeomans, L. Valenzuela-Cázares, C.Z. Fernández, JINST 16(02), P02002 (2021). https://doi.org/10.1088/1748-0221/16/02/p02002

    Article  Google Scholar 

  176. M. Alvarado et al., Nucl. Instrum. Meth. A 953, 163150 (2020). https://doi.org/10.1016/j.nima.2019.163150

    Article  Google Scholar 

  177. C. Zepeda-Fernández, L. Rebolledo-Herrera, M. Rodríguez-Cahuantzi, E. Moreno-Barbosa, JINST 15(09), P09008 (2020). https://doi.org/10.1088/1748-0221/15/09/P09008

    Article  ADS  Google Scholar 

  178. J. Adam et al., JCAP 1601, 032 (2016). https://doi.org/10.1088/1475-7516/2016/01/032

    Article  ADS  Google Scholar 

  179. V. Avati, L. Dick, K. Eggert, J. Strom, H. Wachsmuth, S. Schmeling, T. Ziegler, A. Bruhl, C. Grupen, Astropart. Phys. 19, 513 (2003). https://doi.org/10.1016/S0927-6505(02)00247-5

    Article  ADS  Google Scholar 

  180. J. Abdallah et al., Astropart. Phys. 28, 273 (2007). https://doi.org/10.1016/j.astropartphys.2007.06.001

    Article  Google Scholar 

  181. I.I. Yashin, et al., in Proceedings, 28th International Cosmic Ray Conference (ICRC 2003): Tsukuba, Japan, July 31-August 7, 2003 (2003), pp. 1147–1150. http://www-rccn.icrr.u-tokyo.ac.jp/icrc2003/PROCEEDINGS/PDF/287.pdf

  182. A.G. Bogdanov, R.P. Kokoulin, G. Mannocchi, A.A. Petrukhin, O. Saavedra, V.V. Shutenko, G. Trinchero, I.I. Yashin, Astropart. Phys. 98, 13 (2018). https://doi.org/10.1016/j.astropartphys.2018.01.003

    Article  ADS  Google Scholar 

  183. A. Neronov, D.V. Semikoz, I. Vovk, R. Mirzoyan, Phys. Rev. D 94(12), 123018 (2016). https://doi.org/10.1103/PhysRevD.94.123018

    Article  ADS  Google Scholar 

  184. P. Kankiewicz, M. Rybczynski, Z. Włodarczyk, G. Wilk, Astrophys. J. 839(1), 31 (2017). https://doi.org/10.3847/1538-4357/aa67ee

    Article  ADS  Google Scholar 

  185. M. Bielewicz, M. Grodzicka-Kobylka et al., Proc. SPIE 10808, 1080847 (2018). https://doi.org/10.1117/12.2501720

    Article  Google Scholar 

  186. M. Bielewicz et al., EPJ Web Conf. 204, 07016 (2019). https://doi.org/10.1051/epjconf/201920407016

    Article  Google Scholar 

  187. M. Grodzicka, M. Moszynski, T. Szczesniak, A. Ferri, C. Piemonte, M. Szawlowski, A. Gola, K. Grodzicki, A. Tarolli, JINST 9, P08004 (2014). https://doi.org/10.1088/1748-0221/9/08/P08004

    Article  ADS  Google Scholar 

  188. M. Grodzicka, M. Moszynski, T. Szczesniak, M. Kapusta, M. Szawlowski, D. Wolski, in Proceedings, 2010 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC 2010): Knoxville, Tennessee, October 30–November 6, 2010 (2010), pp. 1940–1948. https://doi.org/10.1109/NSSMIC.2010.5874113

  189. W.M. Zabołotny et al., JINST 12(01), C01050 (2017). https://doi.org/10.1088/1748-0221/12/01/C01050

    Article  Google Scholar 

  190. W.M. Zabolotny, A. Byszuk, JINST 11(03), C03004 (2016). https://doi.org/10.1088/1748-0221/11/03/C03004

    Article  Google Scholar 

  191. R. Abegg et al., Phys. Rev. D 50, 92 (1994). https://doi.org/10.1103/PhysRevD.50.92

    Article  ADS  Google Scholar 

  192. M. Raggi, V. Kozhuharov, Riv. Nuovo Cim. 38(10), 449 (2015). https://doi.org/10.1393/ncr/i2015-10117-9

    Article  ADS  Google Scholar 

  193. R. Arnaldi et al., Eur. Phys. J. C 59, 607 (2009). https://doi.org/10.1140/epjc/s10052-008-0857-2

    Article  ADS  Google Scholar 

  194. MYu. Barabanov, A.S. Vodopyanov, A.I. Zinchenko, S.L. Olsen, Phys. Atom. Nucl. 79(1), 126 (2016). https://doi.org/10.1134/S1063778816010063

    Article  ADS  Google Scholar 

  195. MYu. Barabanov, A.S. Vodopyanov, A.I. Zinchenko, Nuovo Cim. C 42(2–3), 110 (2019). https://doi.org/10.1393/ncc/i2019-19110-2

    Article  Google Scholar 

  196. Simulation and Analysis Framework for the MPD experiment of the NICA project. http://mpdroot.jinr.ru/

  197. FAIR-GSI. FairROOT software package. https://fairroot.gsi.de

  198. CERN-GEANT. Detector Description and Simulation Tool. http://geant4.cern.ch

  199. W. Cassing, E.L. Bratkovskaya, Phys. Rev. C 78, 034919 (2008). https://doi.org/10.1103/PhysRevC.78.034919

    Article  ADS  Google Scholar 

  200. W. Cassing, E.L. Bratkovskaya, Nucl. Phys. A 831, 215 (2009). https://doi.org/10.1016/j.nuclphysa.2009.09.007

    Article  ADS  Google Scholar 

  201. J. Aichelin, E. Bratkovskaya, A. Le Fèvre, V. Kireyeu, V. Kolesnikov, Y. Leifels, V. Voronyuk, G. Coci, Phys. Rev. C 101(4), 044905 (2020). https://doi.org/10.1103/PhysRevC.101.044905

    Article  ADS  Google Scholar 

  202. M. Baznat, A. Botvina, G. Musulmanbekov, V. Toneev, V. Zhezher, Phys. Part. Nucl. Lett. 17(3), 303 (2020). https://doi.org/10.1134/S1547477120030024

    Article  Google Scholar 

  203. C. Loizides, J. Nagle, P. Steinberg, SoftwareX 1–2, 13 (2015). https://doi.org/10.1016/j.softx.2015.05.001

  204. D. Kharzeev, M. Nardi, Phys. Lett. B 507, 121 (2001). https://doi.org/10.1016/S0370-2693(01)00457-9

    Article  ADS  Google Scholar 

  205. I. Selyuzhenkov. Klochkov, J. Phys. Conf. Ser. 798(1), 012059 (2017). https://doi.org/10.1088/1742-6596/798/1/012059

    Article  MathSciNet  Google Scholar 

  206. V. Klochkov, I. Selyuzhenkov, Acta Phys. Polon. Suppl. 10, 919 (2017). https://doi.org/10.5506/APhysPolBSupp.10.919

    Article  Google Scholar 

  207. M. Golubeva, et al., Technical Design Report for the MPD experiment FHCal. http://mpd.jinr.ru/wp-content/uploads/2018/05/MPD_TDR_FHCal_28_05_2018.pdf

  208. T.A. Drozhzhova, V.N. Kovalenko, A.Y. Seryakov, G.A. Feofilov, Phys. Atom. Nucl. 79(5), 737 (2016). https://doi.org/10.1134/S1063778816040074

    Article  ADS  Google Scholar 

  209. S.J. Das, G. Giacalone, P.A. Monard, J.Y. Ollitrault, Phys. Rev. C 97(1), 014905 (2018). https://doi.org/10.1103/PhysRevC.97.014905

  210. A.B. Kurepin, A.G. Litvinenko, E. Litvinenko, Phys. Atom. Nucl. 83(9), 1359 (2020). https://doi.org/10.1134/S106377882009015X

    Article  ADS  Google Scholar 

  211. M.B. Golubeva, F.F. Guber, A.P. Ivashkin, A.Y. Isupov, A.B. Kurepin, A.G. Litvinenko, E.I. Litvinenko, I.I. Migulina, V.F. Peresedov, Phys. Atom. Nucl. 76, 1 (2013). https://doi.org/10.1134/S1063778812120046

    Article  ADS  Google Scholar 

  212. W. Ehehalt, W. Cassing, Nucl. Phys. A 602, 449 (1996). https://doi.org/10.1016/0375-9474(96)00097-8

  213. V. Kolesnikov, V. Kireyeu, A. Mudrokh, A. Zinchenko, V. Vasendina, Phys. Part. Nucl. Lett. 17, 358 (2020). https://doi.org/10.1134/S1547477120030085

    Article  Google Scholar 

  214. E. Schnedermann, J. Sollfrank, U.W. Heinz, Phys. Rev. C 48, 2462 (1993). https://doi.org/10.1103/PhysRevC.48.2462

    Article  ADS  Google Scholar 

  215. F. Seck, Nucl. Phys. A 1005, 122005 (2021). https://doi.org/10.1016/j.nuclphysa.2020.122005

    Article  Google Scholar 

  216. L. Adamczyk et al., Phys. Rev. Lett. 120(6), 062301 (2018). https://doi.org/10.1103/PhysRevLett.120.062301

    Article  ADS  Google Scholar 

  217. C. Alt et al., Phys. Rev. C 68, 034903 (2003). https://doi.org/10.1103/PhysRevC.68.034903

    Article  ADS  Google Scholar 

  218. E. Kashirin, I. Selyuzhenkov, O. Golosov, V. Klochkov, J. Phys. Conf. Ser. 1690(1), 012127 (2020). https://doi.org/10.1088/1742-6596/1690/1/012127

    Article  Google Scholar 

  219. P. Parfenov, A. Taranenko, I. Selyuzhenkov, P. Senger, EPJ Web Conf. 204, 07010 (2019). https://doi.org/10.1051/epjconf/201920407010

    Article  Google Scholar 

  220. D. Idrisov, V.B. Luong, A. Taranenko, P. Parfenov, A. Demanov, A. Truttse, J. Phys. Conf. Ser. 1690(1), 012129 (2020). https://doi.org/10.1088/1742-6596/1690/1/012129

    Article  Google Scholar 

  221. S.A. Voloshin, A.M. Poskanzer, R. Snellings, Landolt-Bornstein 23, 293 (2010). https://doi.org/10.1007/978-3-642-01539-7_10

    Article  ADS  Google Scholar 

  222. N. Borghini, J.Y. Ollitrault, Phys. Rev. C 70, 064905 (2004). https://doi.org/10.1103/PhysRevC.70.064905

    Article  ADS  Google Scholar 

  223. A. Bzdak, V. Koch, Phys. Rev. C 91(2), 027901 (2015). https://doi.org/10.1103/PhysRevC.91.027901

    Article  ADS  Google Scholar 

  224. X. Luo, N. Xu, Nucl. Sci. Tech. 28(8), 112 (2017). https://doi.org/10.1007/s41365-017-0257-0

    Article  Google Scholar 

Download references

Acknowledgements

We are very grateful to the following agencies and organizations for financial support of the MPD Experiment and the MPD members: Ministry of Science and Technology (MOST) National Key R &D Program of China (Grant No. 2020YFE0202000), National Natural Science Foundation of China (NSFC), Chinese Academy of Sciences (CAS), Ministry of Education (MOE); The Czech Republic – Grants “3+3” and the Grants of the Plenipotentiary of the Government of the Czech Republic in JINR as well as by MEYS Grant LTT18021; The Mexican Collaboration (MexNICA) thankfully acknowledges support from UNAM-DGAPA-PAPIIT grant number IG100322, from the Consejo Nacional de Ciencia y Tecnología (CONACyT), grant numbers A1-S-7655 and A1-S16215, the permission to use computer resources, the technical advise and the support provided by the Laboratorio Nacional de Supercómputo del Sureste de México (LNS), a member of the CONACyT national network of laboratories, with resources from grant number 201701035C and the BUAP Medical Physics and Elementary Particles Labs; Poland – National Science Centre (NCN) grants 2016/23/B/ST2/00692 and 2020/39/O/ST2/00277, Ministry of Science and Higher Education, The Polish Plenipotentiary for JINR, WUT ID-UB; The Russian Federation – Russian Foundation for Basic Research under grant 18-02-40084/19, 18-02-40137/19, 18-02-40065/19, 18-02-40054/19, 18-02-40056/19, 18-02-40079/19, 18-02-40085/19, 18-02-40045/19, 18-02-40038/19, 18-02-40086/19, 18-02-40051/51, 18-02-40044/19, 18-02-40037/19, 18-02-40060/19. NRNU MEPhI acknowledges support from Program Priority 2030 and by the Ministry of Science and Higher Education of the Russian Federation, Project ”Fundamental properties of elementary particles and cosmology” No 0723-2020-0041; ANID-Millennium Program-ICN2019_044, Chile. We would like to thank A. Andronic for preparing the figure which we show as Fig. 2, K. Redlich for Fig. 3 and B. Mohanty for preparing the figure version that we show as Fig. 7.

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to A. Ayala.

Additional information

Communicated by N. Alamanos.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abgaryan, V., Acevedo Kado, R., Afanasyev, S.V. et al. Status and initial physics performance studies of the MPD experiment at NICA. Eur. Phys. J. A 58, 140 (2022). https://doi.org/10.1140/epja/s10050-022-00750-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-022-00750-6

Navigation