Skip to main content

Advertisement

Log in

Experimental investigation of the 9.2 and 24.3 keV nuclear transitions in \(^{227}\)Th

  • Regular Article - Experimental Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

The 9.2 and 24.3 keV nuclear transitions in \(^{\mathrm {227}}\)Th were studied in the \(\upbeta ^{-}\) decay of \(^{\mathrm {227}}\)Ac employing the internal conversion electron spectroscopy. Values of \((9244.6 \pm 0.8)\) and \((24343.1 \pm 1.1)\) eV were determined for their energies. The 24.3 keV transition was found to be of the mixed (M1 \(+\) E2) multipolarity with the spectroscopic admixture parameter \(\delta ^{\mathrm {2}}\) \((E2/M1)\)=\((0.0116 \pm 0.0004)\). Energies of \((24342.9 \pm 1.2)\), \((28613.3 \pm 1.7)\), and \((37860.2 \pm 2.0)\) eV were obtained respectively for the 24.3, 28.6, and 37.8 keV transitions in \(^{\mathrm {227}}\)Th by means of the gamma-ray spectroscopy. Natural atomic-level widths of \((14.1 \pm 0.5)\), \((11.4 \pm 0.5)\), \((6.9 \pm 0.4)\), \((11.4 \pm 1.4)\), \((8.6\pm 1.2)\), and \((6.0 \pm 0.7)\) eV for the M\(_{\mathrm {1}}\)-, M\(_{\mathrm {2}}\)-, M\(_{\mathrm {3}}\)-, N\(_{\mathrm {1}}\)-, N\(_{\mathrm {2}}\)-, and N\(_{\mathrm {3}}\)-subshells of thorium, respectively, were derived from conversion electron lines. The cross checking of the energy values of the 9.2, 15.1, and 24.3 keV nuclear transitions obtained by the ICES method is also given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. F. Kondev, E. Mc Cutchan, B. Singh, J. Tulid, Nuclear Data Sheets for \({\rm A}=227\)132, 331 (2016). https://doi.org/10.1016/j.nds.2016.01.002

  2. G.A. Leander, Y.S. Chen, Phys. Rev. C 37, 2744 (1988). https://doi.org/10.1103/PhysRevC.37.2744

    Article  ADS  Google Scholar 

  3. G.I. Novikova, E.A. Volkova, L.L. Gol’din, D.M. Ziv, E.F. Tret’yakov, Z. Eksp, Teor. Fiz. 37, 928 (1959)

    Google Scholar 

  4. G.I. Novikova, E.A. Volkova, L.L. Gol’din, D.M. Ziv, E.F. Tret’yakov, Sov. Phys. JETP 10, 663 (1960)

    Google Scholar 

  5. A. Kovalík, A.Kh. Inoyatov, L.L. Perevoshchikov, M. Ryšavý, D.V. Filosofov, P. Alexa, J. Kvasil, Phys. Lett. B 820 (2021) 136593. https://doi.org/10.1016/j.physletb.2021.136593

  6. A. Kovalík, A.K. Inoyatov, L.L. Perevoshchikov, M. Ryšavý, D.V. Filosofov, J.A. Dadakhanov, Eur. Phys. J. A 55, 131 (2019). https://doi.org/10.1140/epja/i2019-12812-5

    Article  ADS  Google Scholar 

  7. Ch. Briançon, B. Legrand, R.J. Walen, Ts. Vylov, A. Minkova, A. Inoyatov, Nucl. Instrum. Methods 221, 547 (1984). https://doi.org/10.1016/0167-5087(84)90062-0

  8. V.M. Gorozhankin, V.G. Kalinnikov, A. Kovalík, A.A. Solnyshkin, A.F. Novgorodov N.A. Lebedev, N.Yu. Kotovskij, E.A. Yakushev, M.A. Mahmoud and M. Ryšavý, J. Phys. G: Nucl. Part. Phys. 22, 377 (1996) https://doi.org/10.1088/0954-3899/22/3/011

  9. Coral M. Baglin, Nucl. Data Sheets \(({\rm A}=169)\)109, 2033 (2008). https://doi.org/10.1016/j.nds.2008.08.001

  10. R.B. Firestone, V.S. Shirley, Tables of Isotopes, 8th ed., Wiley-Interscience, New York (1996) Appendix C-3

  11. K.D. Sevier, Atom. Data Nucl. Data Tables 24, 323 (1979). https://doi.org/10.1016/0092-640X(79)90012-3

    Article  ADS  Google Scholar 

  12. A.K. Inoyatov, A. Kovalík, D.V. Filosofov, Y.V. Yushkevich, M. Ryšavý, M. Zbořil, J. Electron Spectrosc. Relat. Phenom. 202, 46 (2015). https://doi.org/10.1016/j.elspec.2015.02.015

    Article  Google Scholar 

  13. A. V. Naumkin, A. Kraut-Vass, S.W. Gaarenstroom, C.J. Powell, NIST Standard Reference Database 20, Version 4.1, (“X-ray Photoelectron Spectroscopy Database”). http://srdata.nist.gov/xps/selEnergyType.aspx

  14. A. Inoyatov, D.V. Filosofov, V.M. Gorozhankin, A. Kovalík, L.L. Perevoshchikov, Ts. Vylov, J. Electron Spectrosc. Relat. Phenom. 160, 54 (2007). https://doi.org/10.1016/j.elspec.2007.06.005

  15. A. Špalek, Surf. Interface Anal. 15, 739 (1990). https://doi.org/10.1002/sia.740151206

    Article  Google Scholar 

  16. A. Špalek, Nucl. Instr. Methods. A 264, 410 (1988). https://doi.org/10.1016/0168-9002(88)90932-1

    Article  ADS  Google Scholar 

  17. A. Špalek, Nucl. Instr. Methods 198, 399 (1982). https://doi.org/10.1016/0167-5087(82)90281-2

    Article  Google Scholar 

  18. A. Špalek, O. Dragoun, J. Phys. G: Nucl. Part. Phys. 19, 2071 (1993). https://doi.org/10.1088/0954-3899/19/12/012

    Article  ADS  Google Scholar 

  19. O. Dragoun, A. Špalek, A. Kovalík, M.Ryšavý, J. Frána, V. Brabec, E.A. Yakushev, A.F. Novgorodov, D. Liljequist, Nucl. Instrum. Methods in Physics Research B 194, 112 (2002). https://doi.org/10.1016/S0168-583X(02)00688-2

  20. J. Frána, Radioanal. Nucl. Chem. 257, 583 (2003). https://doi.org/10.1023/A:1025448800782

  21. Update of X Ray and Gamma Ray Decay Data Standards for Detector Calibration and Other Applications. Volume 1: Recommended Decay Data, High Energy Gamma Ray Standards and Angular Correlation Coefficients, International Atomic Energy Agency, Vienna, 2007, p. 12, 19

  22. R.G. Helmer, C. van der Leun, Recommended standards for x-ray energy calibration (1999). Nuclear Instruments and Methods in Physics Research A 450, 60 (2000). https://doi.org/10.1016/S0168-9002(00)00252-7

  23. J.A. Bearden, A.F. Burr, Rev. Mod. Phys. 39, 125 (1967). https://doi.org/10.1103/RevModPhys.39.125

    Article  ADS  Google Scholar 

  24. J.C. Fuggle, A.F. Burr, L.M. Watson, D.J. Fabian, W. Lang, J. Phys. F: Metal Phys. 4, 335 (1974). https://doi.org/10.1088/0305-4608/4/2/020

    Article  ADS  Google Scholar 

  25. U. Müller, P. Sevenich, K. Freitag, C. Günther, P. Herzog, G.D. Jones, C. Kliem, J. Manns, T. Weber, B. Will, the ISOLDE Collaboration. Phys. Rev. C 55, 2267 (1997). https://doi.org/10.1103/PhysRevC.55.2267

  26. M. Ryšavý, O. Dragoun, M. Vinduška, Czech. J. Phys. B 27, 538 (1977). https://doi.org/10.1007/bf01587131

    Article  Google Scholar 

  27. C.C. Lu, T.A. Carlson, F.B. Malik, T.C. Tucker, C.W. Nestor Jr., At. Data 3, 1 (1971). https://doi.org/10.1016/S0092-640X(71)80002-5

    Article  ADS  Google Scholar 

  28. M. Ryšavý, O. Dragoun, Comput. Phys. Commun. 19, 93 (1980). https://doi.org/10.1016/0010-4655(80)90069-7

    Article  ADS  Google Scholar 

  29. J.L. Campbell, T. Papp, Atom. Data Nucl. Data Tables 77, 1 (2001). https://doi.org/10.1006/adnd.2000.0848

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We are indebted to Dr. Balraj Singh (McMaster Univ., Hamilton, Canada) for initiating of the experimental investigation of the low energy nuclear transitions in \(^{\mathrm {227}}\)Th. This work was partly supported by Project founded by the MEYS of the Czech Republic under the contract LTT18021.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Ryšavý.

Additional information

Communicated by Anu Kankainen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kovalík, A., Inoyatov, A.K., Perevoshchikov, L.L. et al. Experimental investigation of the 9.2 and 24.3 keV nuclear transitions in \(^{227}\)Th. Eur. Phys. J. A 57, 285 (2021). https://doi.org/10.1140/epja/s10050-021-00577-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-021-00577-7

Navigation