Skip to main content
Log in

SiO2–TiO2 Binary Aerogels: A Small-Angle Scattering Study

  • PHYSICAL METHODS OF INVESTIGATION
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Structural analysis in the range of characteristic sizes from 1 nm to ~1.5 µm was performed for SiO2–TiO2 aerogels prepared in supercritical CO2, isopropanol, hexafluoroisopropanol, or methyl-tert-butyl ether using small-angle X-ray scattering and neutron scattering complementary methods. A two-level model that accounts for scattering by individual inhomogeneities and their aggregates, which have fractal properties, satisfactorily describes the aerogel structures over the entire range of scales. It is shown for the first time that the titania concentration is the key factor in the small-angle neutron and X-ray scattering by SiO2–TiO2 aerogels. The phase composition of an aerogel does not significantly affect the aerogel structure in the range of scales from 1 nm to ~1.5 µm, as probed by small-angle X-ray and neutron scattering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. A. C. Pierre and G. M. Pajonk, Chem. Rev. 102, 4243 (2002). https://doi.org/10.1021/cr0101306

    Article  CAS  PubMed  Google Scholar 

  2. A. Corma and H. Garcia, Adv. Synth. Catal. 348, 1391 (2006). https://doi.org/10.1002/adsc.200606192

    Article  CAS  Google Scholar 

  3. T. Shimizu, K. Kanamori, A. Maeno, et al., Chem. Mater. 28, 6860 (2016). https://doi.org/10.1021/acs.chemmater.6b01936

    Article  CAS  Google Scholar 

  4. J. E. Amonette and J. Matyas, Microporous Mesoporous Mater. 250, 100 (2017). https://doi.org/10.1016/j.micromeso.2017.04.055

    Article  CAS  Google Scholar 

  5. K. E. Yorov, I. V. Kolesnik, I. P. Romanova, et al., J. Supercrit. Fluids, 169, 105099 (2020). https://doi.org/10.1016/j.supflu.2020.105099

  6. M. A. Aegerter, N. Leventis, and M. M. Koebel, Aerogels Handbook (Springer, New York, 2011). https://doi.org/10.1007/978-1-4419-7589-8

  7. B. Malinowska, J. Walendziewski, D. Robert, et al., Appl. Catal., B 46, 441 (2003). https://doi.org/10.1016/S0926-3373(03)00273-X

    Article  CAS  Google Scholar 

  8. M. Dusi, C. A. Müller, T. Mallat, et al., Chem. Commun. 2, 197 (1999). https://doi.org/10.1039/a808374f

    Article  Google Scholar 

  9. M. Beghi, P. Chiurlo, L. Costa, et al., J. Non-Cryst. Solids 145, 175(1992). https://doi.org/10.1016/S0022-3093(05)80451-X

    Article  CAS  Google Scholar 

  10. C. U. Ingemar Odenbrand, S. Lars, T. Andersson, et al., J. Catal. 125, 541 (1990). https://doi.org/10.1016/0021-9517(90)90325-E

    Article  Google Scholar 

  11. B. E. Yoldas, J. Non-Cryst. Solids 38–39, 81 (1980). https://doi.org/10.1016/0022-3093(80)90398-1

    Article  Google Scholar 

  12. A. B. Shishmakov, Y. V. Mikushina, O. V. Koryakova, et al., Russ. J. Inorg. Chem. 64, 864 (2019). https://doi.org/10.1134/S0036023619070155

    Article  CAS  Google Scholar 

  13. J. B. Miller, S. T. Johnston, and E. I. Ko, J. Catal. 150, 311 (1994). https://doi.org/10.1006/jcat.1994.1349

    Article  CAS  Google Scholar 

  14. D. C. M. Dutoit, M. Schneider, and A. Baiker, J. Catal. 153, 16 (1995). https://doi.org/10.1006/jcat.1995.1118

    Article  Google Scholar 

  15. D. C. M. Dutoit, M. Schneider, R. Hutter, et al., J. Catal. 161, 651 (1996). https://doi.org/10.1006/jcat.1996.0227

    Article  CAS  Google Scholar 

  16. A. A. Ismail and I. A. Ibrahim, Appl. Catal., A 346, 200 (2008). https://doi.org/10.1016/j.apcata.2008.05.031

  17. S. V. Ingale, P. B. Wagh, A. K. Tripathi, et al., J. Sol-Gel Sci. Technol. 58, 682 (2011). https://doi.org/10.1007/s10971-011-2445-4

    Article  CAS  Google Scholar 

  18. G. N. Shao, A. Hilonga, S. J. Jeon, et al., Powder Technol. 233, 123 (2013). https://doi.org/10.1016/j.powtec.2012.08.025

    Article  CAS  Google Scholar 

  19. M. Schneider and A. Baiker, Catal. Today 35, 339 (1997). https://doi.org/10.1016/S0920-5861(96)00164-2

    Article  CAS  Google Scholar 

  20. J. H. Lee, S. Y. Choi, C. E. Kim, et al., J. Mater. Sci. 32, 3577 (1997). https://doi.org/10.1023/A:1018665910396

    Article  CAS  Google Scholar 

  21. J. Livage, M. Henry, and C. Sanchez, Prog. Solid State Chem. 18, 259 (1988). https://doi.org/10.1016/0079-6786(88)90005-2

    Article  CAS  Google Scholar 

  22. D. A. Zherebtsov, S. A. Kulikovskikh, V. V. Viktorov, et al., Russ. J. Inorg. Chem. 64, 165 (2019). https://doi.org/10.1134/S0036023619020220

    Article  CAS  Google Scholar 

  23. F. Kirkbir, H. Murata, D. Meyers, et al., J. Non-Cryst. Solids 225, 14 (1998). https://doi.org/10.1016/S0022-3093(98)00003-9

    Article  CAS  Google Scholar 

  24. S. Yoda and S. Ohshima, J. Non-Cryst. Solids 248, 224 (1999). https://doi.org/10.1016/S0022-3093(99)00250-1

    Article  CAS  Google Scholar 

  25. S. A. Lermontov, E. A. Straumal, A. A. Mazilkin, et al., J. Phys. Chem. 120, 3319 (2016). https://doi.org/10.1021/acs.jpcc.5b10461

    Article  CAS  Google Scholar 

  26. S. Lermontov, A. Malkova, L. Yurkova, et al., J. Supercrit. Fluids 89, 28 (2014). https://doi.org/10.1016/j.supflu.2014.02.011

    Article  CAS  Google Scholar 

  27. K. E. Yorov, N. A. Sipyagina, A. N. Malkova, et al., Inorg. Mater. 52, 163 (2016). https://doi.org/10.1134/S0020168516020035

    Article  CAS  Google Scholar 

  28. K. E. Yorov, N. A. Sipyagina, A. E. Baranchikov, et al., Russ. J. Inorg. Chem. 61, 1339 (2016). https://doi.org/10.1134/S0036023616110048

    Article  CAS  Google Scholar 

  29. D. W. Matson and R. D. Smith, J. Am. Ceram. Soc. 72, 871 (1989). https://doi.org/10.1111/j.1151-2916.1989.tb06237.x

    Article  CAS  Google Scholar 

  30. V. Majer, V. Svoboda, and H. V. Kehiaian, Enthalpies of Vaporization of Organic Compounds: A Critical Review and Data Compilation (Oxford, 1985).

    Google Scholar 

  31. T. E. Daubert and G. Hutchison, AIChE Symp. Ser. 279, 93 (1990).

  32. T. Tsukahara, M. Harada, H. Tomiyasu, et al., J. Phys. Chem. A 112, 9657 (2008). https://doi.org/10.1021/jp802508h

    Article  CAS  PubMed  Google Scholar 

  33. C. E. Blanchet, A. Spilotros, F. Schwemmer, et al., J. Appl. Crystallogr. 48, 431 (2015). https://doi.org/10.1107/S160057671500254X

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. https://www.embl-hamburg.de/biosaxs/software.html.

  35. P. Mikula, P. Lukáš, and F. Eichhorn, J. Appl. Crystallogr. 21, 33 (1988). https://doi.org/10.1107/S0021889887008653

    Article  Google Scholar 

  36. P. Strunz, J. Saroun, P. Mikula, et al., J. Appl. Crystallogr. 30, 844 (1997). https://doi.org/10.1107/S0021889897001271

    Article  CAS  Google Scholar 

  37. D. I. Svergun and L. A. Feigin, X-ray and Neutron Small-Angle Scattering (Nauka, Moscow, 1986) [in Russian].

    Google Scholar 

  38. G. Beaucage, T. A. Ulibarri, E. P. Black, et al., Hybrid Organic-Inorganic Composites (Washington, 1995). https://doi.org/10.1021/bk-1995-0585

  39. S. A. Lermontov, G. P. Kopitsa, A. Y. Baranchikov, et al., J. Solid State Chem. 198, 496 (2012). https://doi.org/10.1016/j.jssc.2012.11.022

    Article  CAS  Google Scholar 

  40. V. K. Ivanov, G. P. Kopitsa, F. Y. Sharikov, et al., Phys. Rev. B: Condens. Matter Mater. Phys. 81, 174201 (2010). https://doi.org/10.1103/PhysRevB.81.174201

    Article  CAS  Google Scholar 

  41. G. P. Kopitsa, V. K. Ivanov, M. Sharp, et al., Russ. J. Inorg. Chem. 54, 2091 (2009). https://doi.org/10.1134/s0036023609140022

    Article  Google Scholar 

  42. S. V. Grigor’ev, V. M. Haramus, G. P. Kopitsa, et al., Russ. J. Inorg. Chem. 55, 155 (2010). https://doi.org/10.1134/s0036023610020038

    Article  Google Scholar 

  43. S. A. Lermontov, A. N. Malkova, N. A. Sipyagina, et al., Inorg. Mater. 53, 1270 (2017). https://doi.org/10.1134/S002016851712007X

    Article  CAS  Google Scholar 

  44. S. A. Lermontov, A. E. Baranchikov, N. A. Sipyagina, et al., Russ. J. Inorg. Chem. 65, 255 (2020). https://doi.org/10.1134/S0036023620020084

    Article  CAS  Google Scholar 

  45. B. Hammouda, J. Appl. Crystallogr. 43, 716 (2010). https://doi.org/10.1107/S0021889810015773

    Article  CAS  Google Scholar 

  46. A. Guinier and G. Fournet, Small-Angle Scattering of X‑rays (John Wiley & Sons Inc., New York, 1955).

    Google Scholar 

  47. J. Teixeira, Experimental Methods for Studying Fractal Aggregates (Growth Form, Dordrecht, 1986). https://doi.org/10.1007/978-94-009-5165-5_9

  48. G. Beaucage, J. Appl. Crystallogr. 28, 717 (1995). https://doi.org/10.1107/S0021889895005292

    Article  CAS  Google Scholar 

  49. A. C. Pierre and A. Rigacci, in Aerogels Handbook (Springer, New York, 2011). https://doi.org/10.1007/978-1-4419-7589-8_2

  50. J. E. Elshof, R. Besselink, T. M. Stawski, et al., in Sol-Gel Handbook (Wiley-VCH Verlag GmbH & Co., Weinheim, 2015). https://doi.org/10.1002/9783527670819.ch21

  51. E. Indrea, A. Peter, D. T. Silipas, et al., J. Phys. Conf. Ser. 182, 012066 (2009). https://doi.org/10.1088/1742-6596/182/1/012066

    Article  CAS  Google Scholar 

  52. V. Torma, H. Peterlik, U. Bauer, et al., Chem. Mater. 17, 3146 (2005). https://doi.org/10.1021/cm047996n

    Article  CAS  Google Scholar 

  53. W. Sari, D. Fitriyani, E. G. R. Putra, et al., AIP Conf. Proc. 1202, 185 (2010). https://doi.org/10.1063/1.3295595

    Article  CAS  Google Scholar 

  54. C. Oh and C. M. Sorensen, J. Colloid Interface Sci. 193, 17 (1997). https://doi.org/10.1006/jcis.1997.5046

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

The studies were carried out using the equipment of the Center for Collective Use of the Kurnakov Institute of General and Inorganic Chemistry.

Funding

This work was supported by the Russian Science Foundation (grant no. 19-73-20125). The USANS measurements were performed on CANAM (NPI CAS Řež) equipment supported by MŠMT project no. LM2015056.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. E. Baranchikov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Fedorova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baranchikov, A.E., Kopitsa, G.P., Yorov, K.E. et al. SiO2–TiO2 Binary Aerogels: A Small-Angle Scattering Study. Russ. J. Inorg. Chem. 66, 874–882 (2021). https://doi.org/10.1134/S003602362106005X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S003602362106005X

Keywords:

Navigation