Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Generating antiaromaticity in polycyclic conjugated hydrocarbons by thermally selective skeletal rearrangements at interfaces

Abstract

Antiaromatic polycyclic conjugated hydrocarbons (PCHs) are attractive research targets because of their interesting structural, electronic and magnetic properties. Unlike aromatic compounds, the synthesis of antiaromatic PCHs is challenging because of their high reactivity and lack of stability, which stems from the small energy gap between their highest occupied and lowest unoccupied molecular orbitals. Here we describe a strategy for the introduction of antiaromatic units in PCHs via thermally selective intra- and intermolecular ring-rearrangement reactions of dibromomethylene-functionalized molecular precursors upon sublimation on a hot Au(111) metal surface, not available in solution chemistry. The synthetic value of these reactions is proven by the integration of pentalene segments into acene-based precursors, which undergo intramolecular ring rearrangement, and the formation of π-conjugated ladder polymers, linked through cyclobutadiene connections, due to ring-rearrangement and homocoupling reactions of indenofluorene-based precursors. The reaction products are investigated by scanning tunnelling microscopy and non-contact atomic force microscopy, and mechanistic insights are unveiled by computational studies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: On-surface generation of antiaromatic subunits in PCHs.
Fig. 2: Integration of pentalene subunits into the molecular backbone of 1 by thermal rearrangement reactions upon deposition on a hot Au(111) surface.
Fig. 3: On-surface synthesis of dinaphtho[a,e]pentalene derivatives.
Fig. 4: On-surface formation of diindeno[2,1-a:2′,1′-g]-s-indacene, diindeno[2,1-a:1′,2′-h]-s-indacene derivatives and homochiral dimers through intramolecular ring-rearrangement reactions.
Fig. 5: Free-energy calculation of surface-catalysed reaction pathways.
Fig. 6: Polymerization of 8 via intra- and intermolecular thermal rearrangement reactions.

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during this study are available at the IMDEA Nanociencia repository (https://repositorio.imdeananociencia.org).

Code availability

The Fireball software package is available at https://github.com/fireball-QMD and the PP-SPM software package can be downloaded at https://github.com/Probe-Particle/ppafm#probe-particle-model.

References

  1. Breslow, R., Brown, J. & Gajewski, J. J. Antiaromaticity of cyclopropenyl anions. J. Am. Chem. Soc. 89, 4383–4390 (1967).

    CAS  Google Scholar 

  2. Breslow, R. Antiaromaticity. Acc. Chem. Res. 6, 393–398 (1973).

    CAS  Google Scholar 

  3. Randic, M. Aromaticity and conjugation. J. Am. Chem. Soc. 99, 444–450 (1977).

    CAS  Google Scholar 

  4. von E. Doering, W. & Detert, F. L. Cycloheptatrienylium oxide. J. Am. Chem. Soc. 73, 876–877 (1951).

    Google Scholar 

  5. Zeng, Z. et al. Pro-aromatic and anti-aromatic π-conjugated molecules: an irresistible wish to be diradicals. Chem. Soc. Rev. 44, 6578–6596 (2015).

    CAS  Google Scholar 

  6. Cao, J. et al. The impact of antiaromatic subunits in [4n + 2] π-systems: bispentalenes with [4n + 2] π-electron perimeters and antiaromatic character. J. Am. Chem. Soc. 137, 7178–7188 (2015).

    CAS  PubMed  Google Scholar 

  7. Kawase, T. et al. Dinaphthopentalenes: pentalene derivatives for organic thin-film transistors. Angew. Chem. 122, 7894–7898 (2010).

    Google Scholar 

  8. Chase, D. T. et al. 6,12-Diarylindeno[1,2-b]fluorenes: syntheses, photophysics and ambipolar OFETs. J. Am. Chem. Soc. 134, 10349–10352 (2012).

    CAS  PubMed  Google Scholar 

  9. Dai, G., Chang, J., Jing, L. & Chi, C. Diacenopentalene dicarboximides as new n-type organic semiconductors for field-effect transistors. J. Mater. Chem. C 4, 8758–8764 (2016).

    CAS  Google Scholar 

  10. Grenz, D. C., Schmidt, M., Kratzert, D. & Esser, B. Dibenzo[a,e]pentalenes with low-lying LUMO energy levels as potential n-type materials. J. Org. Chem. 83, 656–663 (2018).

    CAS  PubMed  Google Scholar 

  11. Shin, J.-Y., Yamada, T., Yoshikawa, H., Awaga, K. & Shinokubo, H. An antiaromatic electrode-active material enabling high capacity and stable performance of rechargeable batteries. Angew. Chem. Int. Ed. 53, 3096–3101 (2014).

    CAS  Google Scholar 

  12. Mei, J., Diao, Y., Appleton, A. L., Fang, L. & Bao, Z. Integrated materials design of organic semiconductors for field-effect transistors. J. Am. Chem. Soc. 135, 6724–6746 (2013).

    CAS  Google Scholar 

  13. Dai, G. et al. Dianthraceno[a,e]pentalenes: synthesis, crystallographic structures and applications in organic field-effect transistors. Chem. Commun. 51, 503–506 (2015).

    CAS  Google Scholar 

  14. Liu, C. et al. Diaceno[a,e]pentalenes: an excellent molecular platform for high-performance organic semiconductors. Chem. Eur. J. 21, 17016–17022 (2015).

    CAS  PubMed  Google Scholar 

  15. Clair, S. & de Oteyza, D. G. Controlling a chemical coupling reaction on a surface: tools and strategies for on-surface synthesis. Chem. Rev. 119, 4717–4776 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Shen, Q., Gao, H.-Y. & Fuchs, H. Frontiers of on-surface synthesis: from principles to applications. Nano Today 13, 77–96 (2017).

    CAS  Google Scholar 

  17. Urgel, J. I. et al. On-surface synthesis of heptacene organometallic complexes. J. Am. Chem. Soc. 139, 11658–11661 (2017).

    CAS  PubMed  Google Scholar 

  18. Zugermeier, M. et al. On-surface synthesis of heptacene and its interaction with a metal surface. Nanoscale 9, 12461–12469 (2017).

    CAS  PubMed  Google Scholar 

  19. Zuzak, R. et al. Higher acenes by on-surface dehydrogenation: from heptacene to undecacene. Angew. Chem. Int. Ed. 57, 10500–10505 (2018).

    CAS  Google Scholar 

  20. Urgel, J. I. et al. On-surface light-induced generation of higher acenes and elucidation of their open-shell character. Nat. Commun. 10, 861 (2019).

    PubMed  PubMed Central  Google Scholar 

  21. Krüger, J. et al. Decacene: on-surface generation. Angew. Chem. Int. Ed. 56, 11945–11948 (2017).

    Google Scholar 

  22. Eisenhut, F. et al. Dodecacene generated on surface: reopening of the energy gap. ACS Nano 14, 1011–1017 (2020).

    CAS  PubMed  Google Scholar 

  23. Eimre, K. et al. On-surface synthesis and characterization of nitrogen-substituted undecacenes. Nat. Commun. 13, 511 (2022).

    CAS  PubMed  Google Scholar 

  24. Mishra, S. et al. Tailoring bond topologies in open-shell graphene nanostructures. ACS Nano 12, 11917–11927 (2018).

    CAS  Google Scholar 

  25. Rogers, C. et al. Closing the nanographene gap: surface-assisted synthesis of peripentacene from 6,6′-bipentacene precursors. Angew. Chem. Int. Ed. 54, 15143–15146 (2015).

    CAS  Google Scholar 

  26. Sánchez-Grande, A. et al. Unravelling the open-shell character of peripentacene on Au(111). J. Phys. Chem. Lett. 12, 330–336 (2021).

    PubMed  Google Scholar 

  27. Biswas, K. et al. Synthesis and characterization of peri-heptacene on a metallic surface. Angew. Chem. Int. Ed. 61, e202114983 (2022).

    CAS  Google Scholar 

  28. Majzik, Z. et al. Studying an antiaromatic polycyclic hydrocarbon adsorbed on different surfaces. Nat. Commun. 9, 1198 (2018).

    PubMed  PubMed Central  Google Scholar 

  29. Di Giovannantonio, M. & Fasel, R. On-surface synthesis and atomic scale characterization of unprotected indenofluorene polymers. J. Polym. Sci. 60, 1814–1826 (2022).

    Google Scholar 

  30. Su, J., Telychko, M., Song, S. & Lu, J. Triangulenes: from precursor design to on-surface synthesis and characterization. Angew. Chem. Int. Ed. 59, 7658–7668 (2020).

    CAS  Google Scholar 

  31. Dong, L., Liu, P. N. & Lin, N. Surface-activated coupling reactions confined on a surface. Acc. Chem. Res. 48, 2765–2774 (2015).

    CAS  PubMed  Google Scholar 

  32. Kinikar, A. et al. On-surface polyarylene synthesis by cycloaromatization of isopropyl substituents. Nat. Synth. 1, 289–296 (2022).

    Google Scholar 

  33. Biswas, K. et al. Interplay between π-conjugation and exchange magnetism in one-dimensional porphyrinoid polymers. J. Am. Chem. Soc. 144, 12725–12731 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Shiotari, A. et al. Strain-induced skeletal rearrangement of a polycyclic aromatic hydrocarbon on a copper surface. Nat. Commun. 8, 16089 (2017).

    PubMed  PubMed Central  Google Scholar 

  35. Lohr, T. G. et al. On-surface synthesis of non-benzenoid nanographenes by oxidative ring-closure and ring-rearrangement reactions. J. Am. Chem. Soc. 142, 13565–13572 (2020).

    CAS  PubMed  Google Scholar 

  36. Mallada, B. et al. On-surface strain-driven synthesis of nonalternant non-benzenoid aromatic compounds containing four- to eight-membered rings. J. Am. Chem. Soc. 143, 14694–14702 (2021).

    CAS  Google Scholar 

  37. Stetsovych, O. et al. From helical to planar chirality by on-surface chemistry. Nat. Chem. 9, 213–218 (2017).

    CAS  PubMed  Google Scholar 

  38. Albrecht, F. et al. Selectivity in single-molecule reactions by tip-induced redox chemistry. Science 377, 298–301 (2022).

    CAS  Google Scholar 

  39. Cirera, B. et al. Thermal selectivity of intermolecular versus intramolecular reactions on surfaces. Nat. Commun. 7, 11002 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Tang, Y. et al. On-surface debromination of 2,3-bis(dibromomethyl)- and 2,3-bis(bromomethyl)naphthalene: dimerization or polymerization? Angew. Chem. Int. Ed. 61, e202204123 (2022).

    CAS  Google Scholar 

  41. Kawai, S. et al. Competing annulene and radialene structures in a single anti-aromatic molecule studied by high-resolution atomic force microscopy. ACS Nano 11, 8122–8130 (2017).

    CAS  PubMed  Google Scholar 

  42. Kawai, S. et al. An endergonic synthesis of single Sondheimer-Wong diyne by local probe chemistry. Angew. Chem. Int. Ed. 59, 10842–10847 (2020).

    CAS  Google Scholar 

  43. Li, D.-Y. et al. Ladder phenylenes synthesized on Au(111) surface via selective [2 + 2] cycloaddition. J. Am. Chem. Soc. 143, 12955–12960 (2021).

    CAS  PubMed  Google Scholar 

  44. Jacobse, P. H. et al. Pseudo-atomic orbital behavior in graphene nanoribbons with four-membered rings. Sci. Adv. 7, eabl5892 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Di Giovannantonio, M. et al. On-surface synthesis of antiaromatic and open-shell indeno[2,1-b]fluorene polymers and their lateral fusion into porous ribbons. J. Am. Chem. Soc. 141, 12346–12354 (2019).

    PubMed  Google Scholar 

  46. de la Torre, B. et al. Tailoring π-conjugation and vibrational modes to steer on-surface synthesis of pentalene-bridged ladder polymers. Nat. Commun. 11, 4567 (2020).

    PubMed Central  Google Scholar 

  47. Liu, M. et al. Graphene-like nanoribbons periodically embedded with four- and eight-membered rings. Nat. Commun. 8, 14924 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Sánchez‐Sánchez, C. et al. On-surface synthesis and characterization of acene-based nanoribbons incorporating four-membered rings. Chem. Eur. J. 25, 12074–12082 (2019).

    PubMed  Google Scholar 

  49. Fan, Q. et al. Nanoribbons with nonalternant topology from fusion of polyazulene: carbon allotropes beyond graphene. J. Am. Chem. Soc. 141, 17713–17720 (2019).

    CAS  Google Scholar 

  50. Sánchez-Grande, A. et al. On-surface synthesis of ethynylene-bridged anthracene polymers. Angew. Chem. 131, 6631–6635 (2019).

    Google Scholar 

  51. Cirera, B. et al. Tailoring topological order and π-conjugation to engineer quasi-metallic polymers. Nat. Nanotechnol. 15, 437–443 (2020).

    CAS  PubMed  Google Scholar 

  52. Sánchez‐Grande, A. et al. Diradical organic one‐dimensional polymers synthesized on a metallic surface. Angew. Chem. Int. Ed. 59, 17594–17599 (2020).

    Google Scholar 

  53. Biswas, K. et al. On-surface synthesis of doubly-linked one-dimensional pentacene ladder polymers. Chem. Commun. 56, 15309–15312 (2020).

    CAS  Google Scholar 

  54. Martín-Fuentes, C. et al. Cumulene-like bridged indeno[1,2-b]fluorene π-conjugated polymers synthesized on metal surfaces. Chem. Commun. 57, 7545–7548 (2021).

    Google Scholar 

  55. Sánchez-Grande, A. et al. Surface-assisted synthesis of N-containing π-conjugated polymers. Adv. Sci. 9, 2200407 (2022).

    Google Scholar 

  56. Urgel, J. I. et al. On‐surface synthesis of cumulene‐containing polymers via two‐step dehalogenative homocoupling of dibromomethylene‐functionalized tribenzoazulene. Angew. Chem. Int. Ed. 59, 13281–13287 (2020).

    CAS  Google Scholar 

  57. Di Giovannantonio, M. et al. On-surface growth dynamics of graphene nanoribbons: the role of halogen functionalization. ACS Nano 12, 74–81 (2018).

    PubMed  Google Scholar 

  58. Di Giovannantonio, M. et al. On-surface synthesis of indenofluorene polymers by oxidative five-membered ring formation. J. Am. Chem. Soc. 140, 3532–3536 (2018).

    PubMed  Google Scholar 

  59. Gross, L., Mohn, F., Moll, N., Liljeroth, P. & Meyer, G. The chemical structure of a molecule resolved by atomic force microscopy. Science 325, 1110–1114 (2009).

    CAS  PubMed  Google Scholar 

  60. Hapala, P. et al. Mechanism of high-resolution STM/AFM imaging with functionalized tips. Phys. Rev. B 90, 085421 (2014).

    CAS  Google Scholar 

  61. Zhang, H. et al. On-surface synthesis of rylene-type graphene nanoribbons. J. Am. Chem. Soc. 137, 4022–4025 (2015).

    CAS  PubMed  Google Scholar 

  62. Zhang, H. et al. Surface supported gold–organic hybrids: on-surface synthesis and surface directed orientation. Small 10, 1361–1368 (2014).

    CAS  PubMed  Google Scholar 

  63. Levi, Z. U. & Tilley, T. D. Synthesis and electronic properties of extended, fused-ring aromatic systems containing multiple pentalene units. J. Am. Chem. Soc. 132, 11012–11014 (2010).

    CAS  PubMed  Google Scholar 

  64. Sekine, K. et al. Gold-catalyzed facile synthesis and crystal structures of benzene-/naphthalene-based bispentalenes as organic semiconductors. Chem. Eur. J. 25, 216–220 (2019).

    CAS  PubMed  Google Scholar 

  65. Tavakkolifard, S. et al. Gold-catalyzed regiospecific annulation of unsymmetrically substituted 1,5-diynes for the precise synthesis of bispentalenes. Chem. Eur. J. 25, 12180–12186 (2019).

    CAS  Google Scholar 

  66. Frederickson, C. K., Zakharov, L. N. & Haley, M. M. Modulating paratropicity strength in diareno-fused antiaromatics. J. Am. Chem. Soc. 138, 16827–16838 (2016).

    CAS  PubMed  Google Scholar 

  67. Wilbuer, J., Grenz, D. C., Schnakenburg, G. & Esser, B. Donor- and acceptor-functionalized dibenzo[a, e]pentalenes: modulation of the electronic band gap. Org. Chem. Front. 4, 658–663 (2017).

    CAS  Google Scholar 

  68. Pavliček, N. et al. Polyyne formation via skeletal rearrangement induced by atomic manipulation. Nat. Chem. 10, 853–858 (2018).

    PubMed  Google Scholar 

  69. Giessibl, F. J. Atomic resolution on Si(111)-(7 × 7) by noncontact atomic force microscopy with a force sensor based on a quartz tuning fork. Appl. Phys. Lett. 76, 1470–1472 (2000).

    CAS  Google Scholar 

  70. Bartels, L. et al. Dynamics of electron-induced manipulation of individual CO molecules on Cu(111). Phys. Rev. Lett. 80, 2004–2007 (1998).

    CAS  Google Scholar 

  71. Horcas, I. et al. WSXM: a software for scanning probe microscopy and a tool for nanotechnology. Rev. Sci. Instrum. 78, 013705 (2007).

    CAS  PubMed  Google Scholar 

  72. Pearlman, D. A. et al. AMBER, a package of computer programs for applying molecular mechanics, normal mode analysis, molecular dynamics and free energy calculations to simulate the structural and energetic properties of molecules. Comput. Phys. Commun. 91, 1–41 (1995).

    CAS  Google Scholar 

  73. Case, D. A. et al. The AMBER biomolecular simulation programs. J. Comput. Chem. 26, 1668–1688 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Lewis, J. P. et al. Advances and applications in the FIREBALL ab initio tight-binding molecular-dynamics formalism. Phys. Status Solidi B 248, 1989–2007 (2011).

    CAS  Google Scholar 

  75. Mendieta-Moreno, J. I. et al. Fireball/AMBER: an efficient local-orbital DFT QM/MM method for biomolecular systems. J. Chem. Theory Comput. 10, 2185–2193 (2014).

    CAS  PubMed  Google Scholar 

  76. Darve, E. & Pohorille, A. Calculating free energies using average force. J. Chem. Phys. 115, 9169–9183 (2001).

    CAS  Google Scholar 

  77. Izrailev, S. et al. in Computational Molecular Dynamics: Challenges, Methods, Ideas (eds Deuflhard, P. et al.) 39–65 (Springer, 1999).

  78. Pastor, R. W., Brooks, B. R. & Szabo, A. An analysis of the accuracy of Langevin and molecular dynamics algorithms. Mol. Phys. 65, 1409–1419 (1988).

    Google Scholar 

  79. WHAM (Grossfield Laboratory); http://membrane.urmc.rochester.edu/?page_id=126

  80. Kumar, S., Rosenberg, J. M., Bouzida, D., Swendsen, R. H. & Kollman, P. A. THE weighted histogram analysis method for free-energy calculations on biomolecules. I. The method. J. Comput. Chem. 13, 1011–1021 (1992).

    CAS  Google Scholar 

  81. Krejčí, O., Hapala, P., Ondráček, M. & Jelínek, P. Principles and simulations of high-resolution STM imaging with a flexible tip apex. Phys. Rev. B 95, 045407 (2017).

    Google Scholar 

  82. Herges, R. & Geuenich, D. Delocalization of electrons in molecules. J. Phys. Chem. A 105, 3214–3220 (2001).

    CAS  Google Scholar 

  83. Chen, Z., Wannere, C. S., Corminboeuf, C., Puchta, R. & von R. Schleyer, P. Nucleus-independent chemical shifts (NICS) as an aromaticity criterion. Chem. Rev. 105, 3842–3888 (2005).

    CAS  PubMed  Google Scholar 

  84. Frisch, M. J. et al. Gaussian 16, Revision C.01 (Gaussian, 2016).

  85. Weigend, F. & Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy. Phys. Chem. Chem. Phys. 7, 3297–3305 (2005).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This project has received funding from Comunidad de Madrid (projects QUIMTRONIC-CM (Y2018/NMT-4783) and NanoMagCost (P2018/NMT-4321)), an ERC Consolidator Grant (ELECNANO, 766555), ERC (SyG TOMATTO ERC-2020-951224) and Ministerio de Ciencia, Innovacion y Universidades (projects SpOrQuMat (PGC2018-098613-B-C21), CTQ2017-83531-R, PID2019-108532GB-I00, PID2020-114653RB-I00 and CTQ2016-81911-REDT). We acknowledge the support from the ‘(MAD2D-CM)-UCM’ and the ‘(MAD2D-CM)-IMDEA-Nanociencia’ projects funded by Comunidad de Madrid, by the Recovery, Transformation and Resilience Plan, and by NextGenerationEU from the European Union. IMDEA Nanociencia is appreciative of support from the ‘Severo Ochoa’ Programme for Centers of Excellence in R&D (MINECO, grant nos. SEV-2016-0686 and CEX2020-001039-S). Q.C., D.S.-P. and P.J. acknowledge funding support from the CzechNanoLab Research Infrastructure supported by MEYS CR (LM2023051) and GACR project no. 20-13692X. Computational resources were provided by the e-INFRA CZ project (ID 90140), supported by the Ministry of Education, Youth and Sports of the Czech Republic. A.S.-G. acknowledges funding from the ‘Ministerio de Universidades’ for the ‘Plan de Recuperación, Transformación y Resiliencia’ under Margarita Salas grant agreement CA1/RSUE/2021-00369. J.I.U. acknowledges the European Union’s Horizon 2020 research and innovation programme under Marie Skłodowska-Curie grant agreement no. 886314. We acknowledge B. Cirera for fruitful discussions.

Author information

Authors and Affiliations

Authors

Contributions

E.P.-E., A.B., P.J., J.I.U., N.M. and D.E. conceived the project and designed the experiments. D.J.V. and J.S. synthesized the precursors. E.P.-E., A.B., A.S.-G. and B.d.l.T. carried out the experiments. Q.C., D.S.-P., P.M. and J.I.M.-M. performed the theoretical calculations. The experimental data and theoretical results were analysed and discussed by all the authors. E.P.-E., A.B., P.J., J.I.U., N.M. and D.E. wrote the paper, with contributions from all the authors. D.E. supervised the project.

Corresponding authors

Correspondence to Nazario Martín, Pavel Jelínek, José I. Urgel or David Écija.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Synthesis thanks the anonymous reviewers for their contribution to the peer review of this work. Primary Handling Editor: Alison Stoddart, in collaboration with the Nature Synthesis team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Discussion, Supplementary Figs. 1–17 and References.

Supplementary Video 1

Simulation of reaction mechanism for precursor 1.

Supplementary Data 1

Source data for SI.

Source data

Source Data Fig. 2

Unprocessed images for Fig. 2.

Source Data Fig. 3

Unprocessed images for Fig. 3.

Source Data Fig. 4

Unprocessed images for Fig. 4.

Source Data Fig. 6

Unprocessed images for Fig. 6.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pérez-Elvira, E., Barragán, A., Chen, Q. et al. Generating antiaromaticity in polycyclic conjugated hydrocarbons by thermally selective skeletal rearrangements at interfaces. Nat. Synth 2, 1159–1170 (2023). https://doi.org/10.1038/s44160-023-00390-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44160-023-00390-8

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing