Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Exceptionally bright optical emission from a rare and distant gamma-ray burst

Abstract

Long gamma-ray bursts are produced by energy dissipation within ultra-relativistic jets launched by newborn black holes after the collapse of a peculiar class of massive stars. Right after the luminous and highly variable gamma-ray emission, a multi-wavelength afterglow is released by external dissipation of the jet energy in the medium that surrounds the progenitor star. We report the discovery of a very bright (~10 mag) optical emission ~28 s after the explosion of the extremely luminous and energetic GRB 210619B located at redshift 1.937. We observed the transition from a bright reverse to the forward shock emission, demonstrating that the early and late gamma-ray-burst multi-wavelength emission originated from a narrow, magnetized jet propagating into a rarefied interstellar medium. These conditions are found to be optimal to produce the bright optical flash from the reverse shock. Slower jets propagating in denser media are expected to cause a flash of very-high-energy radiation, which is yet to be discovered.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Temporal behaviour of the multi-wavelength emission from GRB 210619B and the joint time-resolved spectra.
Fig. 2: Empirical model of the multi-wavelength afterglow emission of GRB 210619B.
Fig. 3: Optical light curves of GRBs with possible bright reverse shock emission components.
Fig. 4: Multi-wavelength flux and spectral index evolution and comparison with the model.
Fig. 5: Selected spectral energy distributions.
Fig. 6: EisoΓ plane and the region where the optical flash from a relativistic reverse shock can be produced.

Similar content being viewed by others

Data availability

Swift/XRT raw data are public and available from the UK Swift Science Data Centre at the University of Leicester. The light curve data are available at: https://www.swift.ac.uk/xrt_curves/GRB_ID/flux.qdp where GRB_ID is the GRB observation ID. The spectra were obtained at: https://www.swift.ac.uk/xrt_spectra/addspec.php?targ=GRB_ID. The details of the automatic spectral analysis are available at: https://www.swift.ac.uk/xrt_spectra/docs.php. Fermi/LAT raw data are public and can be downloaded using GTBURST software at: https://fermi.gsfc.nasa.gov/ssc/data/analysis/scitools/gtburst.html. Fermi/LAT 2nd GRB catalogue data are available at: https://www-glast.stanford.edu/pub_data/953/. All reduced data are available from the corresponding author upon reasonable request.

Code availability

HEASoft, Xspec and PyXspec are freely available at: https://heasarc.gsfc.nasa.gov/docs/software/heasoft, https://heasarc.gsfc.nasa.gov/xanadu/xspec and https://heasarc.gsfc.nasa.gov/docs/xanadu/xspec/python/html/index.html. Gtburst is one of the Fermi Science Tools packages, freely available at: https://fermi.gsfc.nasa.gov/ssc/data/analysis/software/. The details of the gtburst analysis can be found at: https://fermi.gsfc.nasa.gov/ssc/data/analysis/scitools/gtburst.html. The emcee Python package is available at: https://emcee.readthedocs.io/en/stable/user/install/. All computer code is available from the corresponding author upon reasonable request.

References

  1. D’Avanzo, P. et al. GRB 210619B: Swift detection of a bright burst and optical counterpart. GRB Coord. Netw. Circ. No. 30261 (2021).

  2. Zhao, Y. et al. GECAM detection of GRB 210619B. GRB Coord. Netw. Circ. No. 30264 (2021).

  3. Svinkin, D. et al. Konus-Wind detection of GRB 210619B. GRB Coord. Netw. Circ. No. 30276 (2021).

  4. Poolakkil, S. & Meegan, C. GRB 210619B: Fermi GBM detection. GRB Coord. Netw. Circ. No. 30279 (2021).

  5. Nekola, M. et al. Robotic telescopes for high energy astrophysics in Ondřejov. Exp. Astron. 28, 79–85 (2010).

    ADS  Google Scholar 

  6. Jelinek, M., Strobl, J., Hudec, R. & Polasek, C. GRB 210619B: Ondrejov D50 detection. GRB Coord. Netw. Circ. No. 30263 (2021).

  7. Beskin, G. M. et al. Wide-field optical monitoring with Mini-MegaTORTORA (MMT-9) multichannel high temporal resolution telescope. Astrophys. Bull. 72, 81–92 (2017).

    ADS  Google Scholar 

  8. de Ugarte Postigo, A. et al. GRB 210619B: redshift from OSIRIS/GTC. GRB Coord. Netw. Circ. No. 30272 (2021).

  9. Rees, M. J. & Meszaros, P. Unsteady outflow models for cosmological gamma-ray bursts. Astrophys. J. Lett. 430, L93 (1994).

    ADS  Google Scholar 

  10. Drenkhahn, G. & Spruit, H. C. Efficient acceleration and radiation in Poynting flux powered GRB outflows. Astron. Astrophys. 391, 1141–1153 (2002).

    ADS  Google Scholar 

  11. Lyutikov, M. & Blandford, R. Gamma ray bursts as electromagnetic outflows. Preprint at arXiv https://doi.org/10.48550/arXiv.astro-ph/0312347 (2003).

  12. Derishev, E. V., Kocharovsky, V. V. & Kocharovsky, V. V. Physical parameters and emission mechanism in gamma-ray bursts. Astron. Astrophys. 372, 1071–1077 (2001).

    ADS  Google Scholar 

  13. Piran, T., Sari, R. & Zou, Y.-C. Observational limits on inverse Compton processes in gamma-ray bursts. Mon. Not. R. Astron. Soc. 393, 1107–1113 (2009).

    ADS  Google Scholar 

  14. Derishev, E. V., Kocharovsky, V. V. & Kocharovsky, V. V. The neutron component in fireballs of gamma-ray bursts: dynamics and observable imprints. Astrophys. J. 521, 640–649 (1999).

    ADS  Google Scholar 

  15. Beloborodov, A. M. Nuclear composition of gamma-ray burst fireballs. Astrophys. J. 588, 931–944 (2003).

    ADS  Google Scholar 

  16. Fan, Y.-Z., Zhang, B. & Wei, D.-M. Naked-eye optical flash from gamma-ray burst 080319B: tracing the decaying neutrons in the outflow. Phys. Rev. D 79, 021301 (2009).

    ADS  Google Scholar 

  17. Ghirlanda, G. et al. Bulk Lorentz factors of gamma-ray bursts. Astron. Astrophys. 609, A112 (2018).

    Google Scholar 

  18. Mészáros, P. & Rees, M. J. Poynting jets from black holes and cosmological gamma-ray bursts. Astrophys. J. Lett. 482, L29–L32 (1997).

    ADS  Google Scholar 

  19. Sari, R. & Piran, T. Predictions for the very early afterglow and the optical flash. Astrophys. J. 520, 641–649 (1999).

    ADS  Google Scholar 

  20. Kobayashi, S. Light curves of gamma-ray burst optical flashes. Astrophys. J. 545, 807–812 (2000).

    ADS  Google Scholar 

  21. Laskar, T. et al. A reverse shock in GRB 130427A. Astrophys. J. 776, 119 (2013).

    ADS  Google Scholar 

  22. Laskar, T. et al. ALMA detection of a linearly polarized reverse shock in GRB 190114C. Astrophys. J. Lett. 878, L26 (2019).

    ADS  Google Scholar 

  23. Laskar, T. et al. A reverse shock in GRB 181201A. Astrophys. J. 884, 121 (2019).

    ADS  Google Scholar 

  24. Perley, D. A. et al. The afterglow of GRB 130427A from 1 to 1016 GHz. Astrophys. J. 781, 37 (2014).

    ADS  Google Scholar 

  25. Racusin, J. L. et al. Broadband observations of the naked-eye γ-ray burst GRB080319B. Nature 455, 183–188 (2008).

    ADS  Google Scholar 

  26. Beskin, G. et al. Fast optical variability of a naked-eye burst—manifestation of the periodic activity of an internal engine. Astrophys. J. Lett. 719, L10–L14 (2010).

    ADS  Google Scholar 

  27. Akerlof, C. et al. Observation of contemporaneous optical radiation from a γ-ray burst. Nature 398, 400–402 (1999).

    ADS  Google Scholar 

  28. Paczynski, B. & Rhoads, J. E. Radio transients from gamma-ray bursters. Astrophys. J. Lett. 418, L5 (1993).

    ADS  Google Scholar 

  29. Sari, R., Piran, T. & Narayan, R. Spectra and light curves of gamma-ray burst afterglows. Astrophys. J. Lett. 497, L17–L20 (1998).

    ADS  Google Scholar 

  30. Eichler, D. & Waxman, E. The efficiency of electron acceleration in collisionless shocks and gamma-ray burst energetics. Astrophys. J. 627, 861–867 (2005).

    ADS  Google Scholar 

  31. Guilbert, P. W., Fabian, A. C. & Rees, M. J. Spectral and variability constraints on compact sources. Mon. Not. R. Astron. Soc. 205, 593–603 (1983).

    ADS  Google Scholar 

  32. Evans, P. A. et al. GRB 130925A: an ultralong gamma ray burst with a dust-echo afterglow, and implications for the origin of the ultralong GRBs. Mon. Not. R. Astron. Soc. 444, 250–267 (2014).

    ADS  Google Scholar 

  33. Laskar, T. et al. GRB 120521C at z ~6 and the properties of high-redshift γ-ray bursts. Astrophys. J. 781, 1 (2014).

    ADS  Google Scholar 

  34. Laskar, T. et al. Energy injection in gamma-ray burst afterglows. Astrophys. J. 814, 1 (2015).

    ADS  Google Scholar 

  35. Laskar, T. et al. A reverse shock in GRB 160509A. Astrophys. J. 833, 88 (2016).

    ADS  Google Scholar 

  36. Alexander, K. D. et al. A reverse shock and unusual radio properties in GRB 160625B. Astrophys. J. 848, 69 (2017).

    ADS  Google Scholar 

  37. Piro, L. et al. A hot cocoon in the ultralong GRB 130925A: hints of a POPIII-like progenitor in a low-density wind environment. Astrophys. J. Lett. 790, L15 (2014).

    ADS  Google Scholar 

  38. Fan, Y.-Z., Dai, Z.-G., Huang, Y.-F. & Lu, T. Optical flash of GRB 990123: constraints on the physical parameters of the reverse shock. Chin. J. Astron. Astrophys. 2, 449–453 (2002).

    ADS  Google Scholar 

  39. Zhang, B., Kobayashi, S. & Mészáros, P. Gamma-ray burst early optical afterglows: implications for the initial Lorentz factor and the central engine. Astrophys. J. 595, 950–954 (2003).

    ADS  Google Scholar 

  40. Zhang, B. & Kobayashi, S. Gamma-ray burst early afterglows: reverse shock emission from an arbitrarily magnetized ejecta. Astrophys. J. 628, 315–334 (2005).

    ADS  Google Scholar 

  41. Giannios, D., Mimica, P. & Aloy, M. A. On the existence of a reverse shock in magnetized gamma-ray burst ejecta. Astron. Astrophys. 478, 747–753 (2008).

    ADS  Google Scholar 

  42. Mizuno, Y. et al. Magnetohydrodynamic effects in propagating relativistic jets: reverse shock and magnetic acceleration. Astrophys. J. Lett. 690, L47–L51 (2009).

    ADS  Google Scholar 

  43. Amati, L. et al. Intrinsic spectra and energetics of BeppoSAX gamma-ray bursts with known redshifts. Astron. Astrophys. 390, 81–89 (2002).

    ADS  Google Scholar 

  44. Yonetoku, D. et al. Gamma-ray burst formation rate inferred from the spectral peak energy-peak luminosity relation. Astrophys. J. 609, 935–951 (2004).

    ADS  Google Scholar 

  45. Ghirlanda, G., Ghisellini, G. & Lazzati, D. The collimation-corrected gamma-ray burst energies correlate with the peak energy of their νFν spectrum. Astrophys. J. 616, 331–338 (2004).

    ADS  Google Scholar 

  46. Kobayashi, S., Piran, T. & Sari, R. Can internal shocks produce the variability in gamma-ray bursts? Astrophys. J. 490, 92 (1997).

    ADS  Google Scholar 

  47. Daigne, F. & Mochkovitch, R. Gamma-ray bursts from internal shocks in a relativistic wind: temporal and spectral properties. Mon. Not. R. Astron. Soc. 296, 275–286 (1998).

    ADS  Google Scholar 

  48. Beloborodov, A. M. Optical and GeV-TeV flashes from gamma-ray bursts. Astrophys. J. Lett. 618, L13–L16 (2005).

    ADS  Google Scholar 

  49. Chambers, K. C. et al. The Pan-STARRS1 Surveys. Preprint at arXiv https://doi.org/10.48550/arXiv.1612.05560 (2016).

  50. Becker, A. HOTPANTS: high order transform of PSF and template subtraction. Astrophysics Source Code Library ascl:1504.004 (2015).

  51. Perley, D. A. GRB 210619B: Liverpool telescope imaging of a red afterglow. GRB Coord. Netw. Circ. No. 30271 (2021).

  52. Pei, Y. C. Interstellar dust from the Milky Way to the Magellanic Clouds. Astrophys. J. 395, 130 (1992).

    ADS  Google Scholar 

  53. Caballero-García, M. D. et al. Multiwavelength study of the luminous GRB 210619B observed with Fermi and ASIM. Mon. Not. R. Astron. Soc. 519, 3201–3226 (2023).

    ADS  Google Scholar 

  54. Evans, P. A. et al. Methods and results of an automatic analysis of a complete sample of Swift-XRT observations of GRBs. Mon. Not. R. Astron. Soc. 397, 1177–1201 (2009).

    ADS  Google Scholar 

  55. Arnaud, K. A. XSPEC: The first ten years. Astronomical Data Analysis Software and Systems V, A.S.P. Conference Series, Vol. 101 (Jacoby, G. H. & Barnes, J. eds), p. 17 (1996).

  56. Kalberla, P. M. W. et al. The Leiden/Argentine/Bonn (LAB) survey of Galactic HI. Final data release of the combined LDS and IAR surveys with improved stray-radiation corrections. Astron. Astrophys. 440, 775–782 (2005).

    ADS  Google Scholar 

  57. Meegan, C. et al. The Fermi gamma-ray burst monitor. Astrophys. J. 702, 791–804 (2009).

    ADS  Google Scholar 

  58. Band, D. et al. BATSE observations of gamma-ray burst spectra. I. Spectral diversity. Astrophys. J. 413, 281 (1993).

    ADS  Google Scholar 

  59. Oganesyan, G., Nava, L., Ghirlanda, G., Melandri, A. & Celotti, A. Prompt optical emission as a signature of synchrotron radiation in gamma-ray bursts. Astron. Astrophys. 628, A59 (2019).

    ADS  Google Scholar 

  60. Burgess, J. M. et al. Gamma-ray bursts as cool synchrotron sources. Nat. Astron. 4, 174–179 (2020).

    ADS  Google Scholar 

  61. Ackermann, M. et al. The first Fermi-LAT Gamma-Ray Burst Catalog. Astrophys. J. Suppl. Ser. 209, 11 (2013).

    ADS  Google Scholar 

  62. Page, K. L. et al. GRB 210619B: Swift-XRT refined analysis. GRB Coord. Netw. Circ. No. 30269 (2021).

  63. Nakar, E. & Piran, T. Early afterglow emission from a reverse shock as a diagnostic tool for gamma-ray burst outflows. Mon. Not. R. Astron. Soc. 353, 647–653 (2004).

    ADS  Google Scholar 

  64. Blandford, R. D. & McKee, C. F. Fluid dynamics of relativistic blast waves. Phys. Fluids 19, 1130–1138 (1976).

    MATH  ADS  Google Scholar 

  65. Granot, J. & Sari, R. The shape of spectral breaks in gamma-ray burst afterglows. Astrophys. J. 568, 820–829 (2002).

    ADS  Google Scholar 

  66. Rhoads, J. E. How to tell a jet from a balloon: a proposed test for beaming in gamma-ray bursts. Astrophys. J. Lett. 487, L1–L4 (1997).

    ADS  Google Scholar 

  67. Salafia, O. S. et al. Multiwavelength view of the close-by GRB 190829A sheds light on gamma-ray burst physics. Astrophys. J. Lett. 931, L19 (2022).

    ADS  Google Scholar 

  68. Granot, J. Interaction of a highly magnetized impulsive relativistic flow with an external medium. Mon. Not. R. Astron. Soc. 421, 2442–2466 (2012).

    ADS  Google Scholar 

  69. Mei, A. et al. Gigaelectronvolt emission from a compact binary merger. Nature 612, 236–239 (2022).

    ADS  Google Scholar 

  70. Nava, L. et al. Clustering of LAT light curves: a clue to the origin of high-energy emission in gamma-ray bursts. Mon. Not. R. Astron. Soc. 443, 3578–3585 (2014).

    ADS  Google Scholar 

  71. Beniamini, P. & van der Horst, A. J. Electrons’ energy in GRB afterglows implied by radio peaks. Mon. Not. R. Astron. Soc. 472, 3161–3168 (2017).

    ADS  Google Scholar 

  72. Panaitescu, A. & Kumar, P. Analytic light curves of gamma-ray burst afterglows: homogeneous versus wind external media. Astrophys. J. 543, 66–76 (2000).

    ADS  Google Scholar 

  73. Goodman, J. & Weare, J. Ensemble samplers with affine invariance. Commun. Appl. Math. Comput. Sci. 5, 65–80 (2010).

    MathSciNet  MATH  Google Scholar 

  74. Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: the MCMC hammer. Publ. Astron. Soc. Pac. 125, 306 (2013).

    ADS  Google Scholar 

  75. Gomboc, A. et al. Optical flashes, reverse shocks and magnetization. In Gamma-ray Burst: Sixth Huntsville Symposium Conference Series Vol. 1133 (eds Meegan, C. et al.) 145–150 (American Institute of Physics, 2009).

  76. Sari, R. & Piran, T. Hydrodynamic timescales and temporal structure of gamma-ray bursts. Astrophys. J. Lett. 455, L143 (1995).

    ADS  Google Scholar 

  77. Haislip, J. B. et al. A photometric redshift of z = 6.39 ± 0.12 for GRB 050904. Nature 440, 181–183 (2006).

    ADS  Google Scholar 

  78. Troja, E. et al. Significant and variable linear polarization during the prompt optical flash of GRB 160625B. Nature 547, 425–427 (2017).

    ADS  Google Scholar 

  79. Vestrand, W. T. et al. The bright optical flash and afterglow from the gamma-ray burst GRB 130427A. Science 343, 38–41 (2014).

    ADS  Google Scholar 

  80. Page, K. L. et al. Multiwavelength observations of the energetic GRB 080810: detailed mapping of the broad-band spectral evolution. Mon. Not. R. Astron. Soc. 400, 134–146 (2009).

    ADS  Google Scholar 

  81. Kobayashi, S. & Zhang, B. GRB 021004: reverse shock emission. Astrophys. J. Lett. 582, L75–L78 (2003).

    ADS  Google Scholar 

  82. Li, W., Filippenko, A. V., Chornock, R. & Jha, S. The early light curve of the optical afterglow of GRB 021211. Astrophys. J. Lett. 586, L9–L12 (2003).

    ADS  Google Scholar 

  83. Blustin, A. J. et al. Swift panchromatic observations of the bright gamma-ray burst GRB 050525a. Astrophys. J. 637, 901–913 (2006).

    ADS  Google Scholar 

  84. Gomboc, A. et al. Multiwavelength analysis of the intriguing GRB 061126: the reverse shock scenario and magnetization. Astrophys. J. 687, 443–455 (2008).

    ADS  Google Scholar 

  85. Jin, Z.-P. et al. GRB 081007 and GRB 090424: the surrounding medium, outflows, and supernovae. Astrophys. J. 774, 114 (2013).

    ADS  Google Scholar 

  86. Gendre, B. et al. Testing gamma-ray burst models with the afterglow of GRB 090102. Mon. Not. R. Astron. Soc. 405, 2372–2380 (2010).

    ADS  Google Scholar 

  87. Gruber, D. et al. Fermi/GBM observations of the ultra-long GRB 091024. A burst with an optical flash. Astron. Astrophys. 528, A15 (2011).

    Google Scholar 

  88. Cano, Z. et al. GRB 091024 : Faulkes telescope north–afterglow confirmation. GRB Coord. Netw. Circ. No. 1066 (2009).

  89. Henden, A., Gross, J., Denny, B., Terrell, D. & Cooney, W. GRB091024: VRcIc afterglow observations. GRB Coord. Netw. Circ. No. 1073 (2009).

  90. Updike, A. C. & Hartmann, D. H. GRB 090118: KPNO 4m detection of candidate afterglow. GRB Coord. Netw. Circ. No. 8829 (2009).

  91. Gupta, R. et al. GRB 140102A: insight into prompt spectral evolution and early optical afterglow emission. Mon. Not. R. Astron. Soc. 505, 4086–4105 (2021).

    ADS  Google Scholar 

  92. Huang, X.-L. et al. Very bright prompt and reverse shock emission of GRB 140512A. Astrophys. J. 833, 100 (2016).

    ADS  Google Scholar 

  93. Jordana-Mitjans, N. et al. Lowly polarized light from a highly magnetized jet of GRB 190114C. Astrophys. J. 892, 97 (2020).

    ADS  Google Scholar 

Download references

Acknowledgements

S.K. and M.P. acknowledge support from the European Structural and Investment Fund and the Czech Ministry of Education, Youth and Sports (Project CoGraDS– CZ.02.1.01/0.0/0.0/15_003/0000437). FRAM-ORM operation is supported by the Czech Ministry of Education, Youth and Sports (project numbers LM2015046, LM2018105 and LTT17006) and by the European Structural and Investment Fund and the Czech Ministry of Education, Youth and Sports (project numbers CZ.02.1.01/0.0/0.0/16_013/0001403 and CZ.02.1.01/0.0/0.0/18_046/0016007). The research leading to these results has received funding from the European Union’s Horizon 2020 Programme under the AHEAD2020 project (grant agreement number 871158). B.B. and M.B. acknowledge financial support from MIUR (PRIN 2017 grant number 20179ZF5KS). This research was supported under the Ministry of Science and Higher Education of the Russian Federation grant number 075-15-2022-262 (13.MNPMU.21.0003). This work made use of data supplied by the UK Swift Science Data Centre at the University of Leicester.

Author information

Authors and Affiliations

Authors

Contributions

S.K. carried out the analysis of the optical data provided by D50, FRAM-ORM and MMT-9. G.O. analysed the Swift/XRT, Swift/BAT and Fermi/GBM data. G.O. and O.S.S. led the interpretation of the multi-wavelength afterglow emission. G.O. led the writing of the paper. S.K. and O.S.S. provided major contributions to the writing of the paper. B.B. reduced the Fermi/LAT data. B.B. and S.R. collected the sample of the bright optical light curves. S.R. conducted the comparison of GRB properties with the population of long GRBs in the Amati and Yonetoku relations. M.J., G.B., J.Š., C.P., R.H., E.I., E.K., A.P., A.B., N.L., V.S., M.M., P.J., J.E., J.J., R.C. and M.P. organized the observations, ensured the operation of and provided the data from D50, FRAM-ORM and MMT-9 telescopes. All the authors contributed to discussions and edited the paper.

Corresponding author

Correspondence to Gor Oganesyan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Astronomy thanks Zhi-Ping Jin and Tanmoy Laskar for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–7 and Tables 1–12.

Supplementary Table 6

Machine-readable version of Supplementary Table 6.

Supplementary Table 7

Machine-readable version of Supplementary Table 7.

Supplementary Table 8

Machine-readable version of Supplementary Table 8.

Supplementary Table 9

Machine-readable version of Supplementary Table 9.

Supplementary Table 10

Machine-readable version of Supplementary Table 10.

Supplementary Table 11

Machine-readable version of Supplementary Table 11.

Supplementary Table 12

Machine-readable version of Supplementary Table 12.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oganesyan, G., Karpov, S., Salafia, O.S. et al. Exceptionally bright optical emission from a rare and distant gamma-ray burst. Nat Astron 7, 843–855 (2023). https://doi.org/10.1038/s41550-023-01972-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41550-023-01972-4

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing