Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-20T05:16:10.068Z Has data issue: false hasContentIssue false

TREE RINGS AS ARCHIVES OF ATMOSPHERIC POLLUTION BY FOSSIL CARBON DIOXIDE IN BRATISLAVA

Published online by Cambridge University Press:  17 January 2023

I Kontuľ*
Affiliation:
Department of Nuclear Physics and Biophysics, Faculty of Mathematics, Physics and Informatics, Comenius University, 842 48 Bratislava, Slovakia
P P Povinec
Affiliation:
Department of Nuclear Physics and Biophysics, Faculty of Mathematics, Physics and Informatics, Comenius University, 842 48 Bratislava, Slovakia
M Richtáriková
Affiliation:
Department of Nuclear Physics and Biophysics, Faculty of Mathematics, Physics and Informatics, Comenius University, 842 48 Bratislava, Slovakia
I Svetlik
Affiliation:
Department of Radiation Dosimetry, Nuclear Physics Institute, Czech Academy of Sciences, 180 00 Prague, Czech Republic
A Šivo
Affiliation:
Department of Nuclear Physics and Biophysics, Faculty of Mathematics, Physics and Informatics, Comenius University, 842 48 Bratislava, Slovakia
*
*Corresponding author. Email: ivan.kontul@fmph.uniba.sk

Abstract

Results of radiocarbon (14C) analysis of a tree-ring series from Bratislava, Slovakia, covering the period from 1970 to 2004 are presented. For a part of this time period, monthly 14C measurements of atmospheric carbon dioxide from Bratislava sampling station are compared with the tree-ring results. The effects of fossil CO2 emissions on 14C levels in the environment are emphasized by comparison with atmospheric clean air reference values (Schauinsland, Germany). The presented results from Bratislava are also set against the previously measured tree-ring series from Low Tatras mountain region in Slovakia, representing regional clean air radiocarbon levels in the biosphere. The observed 14C levels of Bratislava tree rings and atmospheric CO2 in 1970s and 1980s are significantly lower than clean air data, indicating severe fossil CO2 pollution in Bratislava during this time period.

Type
Conference Paper
Copyright
© The Author(s), 2023. Published by Cambridge University Press for the Arizona Board of Regents on behalf of the University of Arizona

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Selected Papers from the 3rd Radiocarbon in the Environment Conference, Gliwice, Poland, 5–9 July 2021

References

REFERENCES

Capano, M, Marzaioli, F, Sirignano, C, Altieri, S, Lubritto, C, D’Onofrio, A, Terrasi, F. 2010. 14C AMS measurements in tree rings to estimate local fossil CO2 in Bosco Fontana forest (Mantova, Italy). Nuclear Instruments and Methods B 268(7–8):11131116.CrossRefGoogle Scholar
Ežerinskis, Ž, Šapolaite, J, Pabedinskas, A, Juodis, L, Garbaras, A, Maceika, E, Druteikiene, R, Lukauskas, D, Remeikis, V. 2018. Annual variations of 14C concentration in the tree rings in the vicinity of Ignalina nuclear power plant. Radiocarbon 60(4):12271236.CrossRefGoogle Scholar
Hammer, S, Levin, I. 2017. Monthly mean atmospheric Δ14CO2 at Jungfraujoch and Schauinsland from 1986 to 201. doi: 10.11588/data/10100, heiDATA, V2.CrossRefGoogle Scholar
Hua, Q, Barbetti, M, Rakowski, AZ. 2013. Atmospheric radiocarbon for the period 1950–2010. Radiocarbon 55(4):20592072.CrossRefGoogle Scholar
Janovics, R, Kelemen, DI, Kern, Z, Kapitány, S, Veres, M, Jull, AJT, Molnár, M. 2016. Radiocarbon signal of a low and intermediate level radioactive waste disposal facility in nearby trees. Journal of Environmental Radioactivity 153:1014.CrossRefGoogle ScholarPubMed
Ješkovský, M, Povinec, PP, Steier, P, Šivo, A, Richtáriková, M, Golser, R. 2015. Retrospective study of 14C concentration in the vicinity of NPP Jaslovské Bohunice using tree rings and the AMS technique. Nuclear Instruments and Methods B 361:129132.CrossRefGoogle Scholar
Kontul’, I, Ješkovský, M, Kaizer, J, Šivo, A, Richtáriková, M, Povinec, PP, Čech, P, Steier, P, Golser, R. 2017. Radiocarbon concentration in tree-ring samples collected in the south-west Slovakia (1974–2013). Applied Radiation and Isotopes 126:5860.CrossRefGoogle ScholarPubMed
Kontul’, I, Povinec, PP, Šivo, A, Richtáriková, M. 2018. Radiocarbon in the atmosphere around the Bohunice nuclear power plant in Slovakia. Journal of Radioanalytical and Nuclear Chemistry 318(3):23352339.CrossRefGoogle Scholar
Kontuľ, I, Svetlik, I, Povinec, PP, Brabcová, KP, Molnár, M. 2020. Radiocarbon in tree rings from a clean air region in Slovakia. Journal of Environmental Radioactivity 218:106237.CrossRefGoogle ScholarPubMed
Krajcar Bronić, I, Horvatinčić, N, Barešić, J, Obelić, B. 2009. Measurement of 14C activity by liquid scintillation counting. Applied Radiation and Isotopes 67(5):800804.CrossRefGoogle ScholarPubMed
Kuc, T, Rozanski, K, Zimnoch, M, Necki, J, Chmura, L, Jelen, D. 2007. Two decades of regular observations of 14CO2 and 13CO2 content in atmospheric carbon dioxide in central Europe: Long-term changes of regional anthropogenic fossil CO2 emissions. Radiocarbon 49(2):807816.CrossRefGoogle Scholar
Levin, I, Kromer, B, Schmidt, M, Sartorius, H. 2003. A novel approach for independent budgeting of fossil fuel CO2 over Europe by 14CO2 observations. Geophysical Research Letters 30(23).Google Scholar
Levin, I, Kromer, B. 2004. The tropospheric 14CO2 level in mid-latitudes of the Northern Hemisphere (1959–2003). Radiocarbon 46(3):12611272.CrossRefGoogle Scholar
Levin, I, Kromer, B, Hammer, S. 2013. Atmospheric Δ14CO2 trend in western European background air from 2000 to 2012. Tellus B 65(1):17.CrossRefGoogle Scholar
Ministry of Environment of the Slovak Republic. 2017. The Seventh National Communication of the Slovak Republic on Climate Change.Google Scholar
Povinec, P. 1972. Preparation of methane gas filing for proportional 3H and 14C counters. Radiochemical and Radioanalytical Letters 9:127135.Google Scholar
Povinec, P. 1978. Multiwire proportional counters for low-level 14C and 3H measurements. Nuclear Instruments and Methods 156:441445.CrossRefGoogle Scholar
Povinec, P, Šáro, S, Chudý, M, Šeliga, M. 1968. The rapid method of carbon-14 counting in atmospheric carbon dioxide. International Journal of Applied Radiation and Isotopes 19:877–881.CrossRefGoogle ScholarPubMed
Povinec, PP, Chudý, M, Šivo, A, Šimon, J, Holý, K, Richtáriková, M. 2009. Forty years of atmospheric radiocarbon monitoring around Bohunice nuclear power plant, Slovakia. Journal of Environmental Radioactivity 100(2):125130.CrossRefGoogle ScholarPubMed
Povinec, PP, Holý, K, Chudý, M, Šivo, A, Sýkora, I, Ješkovský, M, Richtáriková, M. 2012. Long-term variations of 14C and 137Cs in the Bratislava air—implications of different atmospheric transport processes. Journal of Environmental Radioactivity 108:3340.CrossRefGoogle ScholarPubMed
Povinec, PP, Šivo, A, Šimon, J, Holý, K, Chudý, M, Richtáriková, M, Morávek, J. 2008. Impact of the Bohunice nuclear power plant on atmospheric radiocarbon. Applied Radiation and Isotopes 66(11):16861690.CrossRefGoogle ScholarPubMed
Rakowski, A, Kuc, T, Nakamura, T, Pazdur, A. 2004. Radiocarbon concentration in the atmosphere and modern tree rings in the Kraków area, southern Poland. Radiocarbon 46(2):911916.CrossRefGoogle Scholar
Rakowski, AZ, Nadeau, MJ, Nakamura, T, Pazdur, A, Pawełczyk, S, Piotrowska, N. 2013. Radiocarbon method in environmental monitoring of CO2 emission. Nuclear Instruments and Methods B 294:503507.CrossRefGoogle Scholar
Stenström, K, Skog, G, Thornberg, C, Erlandsson, B, Hellborg, R, Mattsson, S, Persson, P. 1997. 14C levels in the vicinity of two Swedish Nuclear power plants and at two “clean-air” sites in southernmost Sweden. Radiocarbon 40(1):433438.CrossRefGoogle Scholar
Stuiver, M, Polach, HA. 1977. Discussion: reporting of 14C data. Radiocarbon 19(3):355363.CrossRefGoogle Scholar
Suess, HE. 1955. Radiocarbon concentration in modern wood. Science 122(3166):415417.CrossRefGoogle Scholar
Svetlik, I, Fejgl, M, Tomaskova, L, Turek, K, Michalek, V. 2012. 14C studies in the vicinity of the Czech NPPs. Journal of Radioanalytical and Nuclear Chemistry 291(2):689695.CrossRefGoogle Scholar
Weiwei, LU, Xinxiao, YU, Guodong, JIA, Hanzhi, LI, Ziqiang, LIU. 2018. Responses of intrinsic water-use efficiency and tree growth to climate change in semi-arid areas of North China. Scientific Reports 8:308.CrossRefGoogle ScholarPubMed
Supplementary material: File

Kontuľ et al. supplementary material

Kontuľ et al. supplementary material

Download Kontuľ et al. supplementary material(File)
File 15.7 KB