Skip to main content
Log in

Novel neurosteroid pregnanolone pyroglutamate suppresses neurotoxicity syndrome induced by tetramethylenedisulfotetramine but is ineffective in a rodent model of infantile spasms

  • Article
  • Published:
Pharmacological Reports Aims and scope Submit manuscript

Abstract

Background

Neurosteroids are investigated as effective antidotes for the poisoning induced by tetramethylenedisulfotetramine (TMDT) as well as treatments for epileptic spasms during infancy. Both these conditions are quite resistant to pharmacotherapy; thus, a search for new treatments is warranted.

Methods

In this study, we determined the efficacy of two novel neurosteroids, pregnanolone glutamate (PAG) and pregnanolone pyroglutamate (PPG), and tested these drugs in doses of 1–10 mg/kg (ip) against the TMDT syndrome and in our rodent model of infantile spasms.

Results

Only PPG in doses 5 and 10 mg/kg suppressed the severity of the TMDT syndrome and TMDT-induced lethality, while the 1 mg/kg dose was without an effect. Interestingly, the 1 mg/kg dose of PPG in combination with 1 mg/kg of diazepam was also effective against TMDT poisoning. Neither PAG nor PPG were effective against experimental spasms in the N-methyl-D-aspartate (NMDA)-triggered model of infantile spasms.

Conclusions

While evidence suggests that PAG can act through multiple actions which include allosteric inhibition of NMDA-induced and glycine receptor-evoked currents as well as augmentation of ɣ-aminobutyric acid subtype A (GABAA) receptor-induced currents, the agent appears to neither have the appropriate mechanistic signature for activity in the infantile spasm model, nor the adequate potency, relative to PPG, for ameliorating the TMDT syndrome. The full mechanisms of action of PPG, which may become a potent TMDT antidote either alone or in combination with diazepam are yet unknown and thus require further investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included as supplementary information files.

Abbreviations

ACTH:

Adrenocorticotropic hormone

ANOVA:

Analysis of variance

CDX:

Cyclodextrin

DMSO:

Dimethylsulfoxide

DZP:

Diazepam

EEG:

Electroencephalography

G:

Gestational day

GABA:

ɣ-Aminobutyric acid

GABAAR:

ɣ-Aminobutyric acid receptor subtype A

IACUC:

Institutional animal use and care committee

ip :

Intraperitoneal

IS:

Infantile spasms

NIH:

National Institutes of Health

NMDA:

N-methyl-D-aspartate

P:

Postnatal day

PAG:

Pregnanolone glutamate

PPG:

Pregnanolone pyroglutamate

sc :

Subcutaneous

TBPS:

Tert-butylbicyclophosphorothionate

TMDT:

Tetramethylenedisulfotetramine, also TETS

References

  1. Sobotka P, Šafanda J. Analysis of the epileptogenic action of tetramine. Act Nerv Super (Praha). 1973;15:171–2.

    CAS  Google Scholar 

  2. Shakarjian MP, Velíšková J, Stanton PK, et al. Differential antagonism of tetramethylenedisulfotetramine-induced seizures by agents acting at NMDA and GABAA receptors. Toxicol Appl Pharmacol. 2012;265:113–21.

    Article  CAS  Google Scholar 

  3. Zolkowska D, Banks CN, Dhir A, et al. Characterization of seizures induced by acute and repeated exposure to tetramethylenedisulfotetramine. J Pharmacol ExpTherap. 2012;341:435–46.

    Article  CAS  Google Scholar 

  4. Li JM, Gan J, Zeng TF, et al. Tetramethylenedisulfotetramine intoxication presenting with de novo status epilepticus: a case series. Neurotoxicology. 2012;33:207–11.

    Article  CAS  Google Scholar 

  5. Rice NC, Rauscher NA, Langston JL, et al. Behavioral intoxication following voluntary oral ingestion of tetramethylenedisulfotetramine: dose-dependent onset, severity, survival, and recovery. Neurotoxicology. 2017;63:21–32.

    Article  CAS  Google Scholar 

  6. Li Y, Gao Y, Yu X, et al. Tetramine poisoning in China: changes over a decade viewed through the media’s eye. BMC Public Health. 2014;14:842.

    Article  Google Scholar 

  7. Jett DA, Yeung DT. The CounterACT Research Network: basic mechanisms and practical applications. Proc Am Thoracic Soc. 2010;7:254–6.

    Article  Google Scholar 

  8. Bowery NG, Brown DA, Collins JF. Tetramethylene disulphotetramine: an inhibitor of gamma-aminobutyric acid induced depolarization of the isolated superior cervical ganglion of the rat. Br J Pharmacol. 1975;53:422–4.

    Article  CAS  Google Scholar 

  9. Pressly B, Nguyen HM, Wulff H. GABAA receptor subtype selectivity of the proconvulsant rodenticide TETS. Arch Toxicol. 2018;92:833–44.

    Article  CAS  Google Scholar 

  10. Pressly B, Vasylieva N, Barnych B, et al. Comparison of the toxico kinetics of the convulsants picrotoxinin and tetramethylenedisulfotetramine (TETS) in mice. Arch Toxicol. 2020;94:1995–2007.

    Article  CAS  Google Scholar 

  11. Moffett MC, Rauscher NA, Rice NC, et al. Survey of drug therapies against acute oral tetramethylenedisulfotetramine poisoning in a rat voluntary consumption model. Neurotoxicology. 2019;74:264–71.

    Article  CAS  Google Scholar 

  12. Shakarjian MP, Ali MS, Veliskova J, et al. Combined diazepam and MK-801 therapy provides synergistic protection from tetramethylenedisulfotetramine-induced tonic-clonic seizures and lethality in mice. Neurotoxicology. 2015;48:100–8.

    Article  CAS  Google Scholar 

  13. Bruun DA, Cao Z, Inceoglu B, et al. Combined treatment with diazepam and allopregnanolone reverses tetramethylenedisulfotetramine (TETS)-induced calcium dysregulation in cultured neurons and protects TETS-intoxicated mice against lethal seizures. Neuropharmacology. 2015;95:332–42.

    Article  CAS  Google Scholar 

  14. Kokate TG, Svensson BE, Rogawski MA. Anticonvulsant activity of neurosteroids: correlation with gamma- aminobutyric acid-evoked chloride current potentiation. J Pharmacol Exp Ther. 1994;270:1223–9.

    CAS  Google Scholar 

  15. Mundy PC, Pressly B, Carty DR, et al. The efficacy of gamma-aminobutyric acid type A receptor (GABA AR) subtype-selective positive allosteric modulators in blocking tetramethylenedisulfotetramine (TETS)-induced seizure-like behavior in larval zebrafish with minimal sedation. Toxicol Appl Pharmacol. 2021;426: 115643.

    Article  CAS  Google Scholar 

  16. Zolkowska D, Wu CY, Rogawski MA. Intramuscular allopregnanolone and ganaxolone in a mouse model of treatment-resistant status epilepticus. Epilepsia. 2018;59(Suppl 2):220–7.

    Article  CAS  Google Scholar 

  17. Kerrigan JF, Shields WD, Nelson TY, et al. Ganaxolone for treating intractable infantile spasms: a multicenter, open-label, add-on trial. Epilepsy Res. 2000;42:133–9.

    Article  CAS  Google Scholar 

  18. Dulac O, Soufflet C, Chiron C, et al. What is West syndrome? Int Rev Neurobiol. 2002;49:1–22.

    Article  Google Scholar 

  19. Shao LR, Stafstrom CE. Pediatric epileptic encephalopathies: pathophysiology and animal models. Semin Pediatr Neurol. 2016;23:98–107.

    Article  Google Scholar 

  20. O’Callaghan FJK, Edwards SW, Alber FD, et al. Vigabatrin with hormonal treatment versus hormonal treatment alone (ICISS) for infantile spasms: 18-month outcomes of an open-label, randomised controlled trial. Lancet Child Adolesc Health. 2018;2:715–25.

    Article  Google Scholar 

  21. Lux AL, Edwards SW, Hancock E, et al. The United Kingdom infantile spasms study (UKISS) comparing hormone treatment with vigabatrin on developmental and epilepsy outcomes to age 14 months: a multicentre randomised trial. Lancet Neurol. 2005;4:712–7.

    Article  CAS  Google Scholar 

  22. Riikonen R, Donner M. ACTH therapy in infantile spasms: side effects. Arch Dis Child. 1980;55:664–72.

    Article  CAS  Google Scholar 

  23. Riikonen RS. Steroids or vigabatrin in the treatment of infantile spasms? Pediatr Neurol. 2000;23:403–8.

    Article  CAS  Google Scholar 

  24. Stafstrom CE, Arnason BG, Baram TZ, et al. Treatment of infantile spasms: emerging insights from clinical and basic science perspectives. J Child Neurol. 2011;26:1411–21.

    Article  Google Scholar 

  25. Velíšek L, Jehle K, Asche S, et al. Model of infantile spasms induced by N-methyl-D-aspartic acid in prenatally impaired brain. Ann Neurol. 2007;61:109–19.

    Article  Google Scholar 

  26. Velíšek L, Chachua T, Yum MS, et al. Model of cryptogenic infantile spasms after prenatal corticosteroid priming. Epilepsia. 2010;51(Suppl 3):145–9.

    Article  Google Scholar 

  27. Chachua T, Yum M-S, Velíšková J, et al. Validation of the rat model of cryptogenic infantile spasms. Epilepsia. 2011;52:1666–77.

    Article  CAS  Google Scholar 

  28. Yum MS, Lee M, Ko TS, et al. A potential effect of ganaxolone in an animal model of infantile spasms. Epilepsy Res. 2014;108:1492–500.

    Article  CAS  Google Scholar 

  29. Rambousek L, Bubeníková-Valešová V, Kačer P, et al. Cellular and behavioural effects of a new steroidal inhibitor of the N-methyl-d-aspartate receptor 3alpha5beta-pregnanolone glutamate. Neuropharmacology. 2011;61:61–8.

    Article  CAS  Google Scholar 

  30. Kletečková L, Tsenov G, Kubová H, et al. Neuroprotective effect of the 3alpha5beta-pregnanolone glutamate treatment in the model of focal cerebral ischemia in immature rats. Neurosci Lett. 2014;564:11–5.

    Article  Google Scholar 

  31. Holubová K, Nekovářová T, Pistovčáková J, et al. Pregnanolone glutamate, a novel use-dependent NMDA receptor inhibitor, exerts antidepressant-like properties in animal models. Front Behav Neurosci. 2014;8:130.

    Article  Google Scholar 

  32. Borovská J, Vyklický V, Šťastná E, et al. Access of inhibitory neurosteroids to the NMDA receptor. Br J Pharmacol. 2012;166:1069–83.

    Article  Google Scholar 

  33. Kudová E, Chodounská H, Slavíková B, et al. A new class of potent N-Methyl-D-Aspartate receptor inhibitors: sulfated neuroactive steroids with lipophilic D-Ring modifications. J Med Chem. 2015;58:5950–66.

    Article  Google Scholar 

  34. Vyklický V, Šmejkalová T, Krausová B, et al. Preferential inhibition of tonically over phasically activated NMDA receptors by pregnane derivatives. J Neurosci. 2016;36:2161–75.

    Article  Google Scholar 

  35. Cao Z, Hammock BD, McCoy M, et al. Tetramethylenedisulfotetramine alters Ca2+ dynamics in cultured hippocampal neurons: mitigation by NMDA blockade and GABAA receptor positive modulation. Toxicol Sci. 2012;130:362–72.

    Article  CAS  Google Scholar 

  36. Kudová E, Chodounská H, Mareš P, et al. 3alpha, 5beta-neuroactive steroids for the treatment of epilepsy and seizure diseases. US Patent Application Publication US20220162257A1, 26 May 2022.

  37. Chern CR, Chern CJ, Velíšková J, et al. AQB-565 shows promise in preclinical testing in the model of epileptic spasms during infancy: head-to-head comparison with ACTH. Epilepsy Res. 2019;152:31–4.

    Article  CAS  Google Scholar 

  38. Adla SK, Slaviková B, Chodounská H, et al. Strong inhibitory effect, low cytotoxicity and high plasma stability of steroidal inhibitors of N-Methyl-D-Aspartate receptors with C-3 amide structural motif. Front Pharmacol. 2018;9:1299.

    Article  CAS  Google Scholar 

  39. Bialer M, Johannessen SI, Levy RH, et al. Progress report on new antiepileptic drugs. A summary of the thirteenth Eilat conference on new antiepileptic drugs and devices (EILAT XIII). Epilepsia. 2017;58:181–221.

    Article  Google Scholar 

  40. Lamb YN. Ganaxolone: first approval. Drugs. 2022;82:933–40.

    Article  CAS  Google Scholar 

  41. Perry MS. New and emerging medications for treatment of pediatric epilepsy. Pediatr Neurol. 2020;107:24–7.

    Article  Google Scholar 

  42. Bukanova JV, Solntseva EI, Kolbaev SN, et al. Modulation of GABA and glycine receptors in rat pyramidal hippocampal neurones by 3alpha5beta-pregnanolone derivatives. Neurochem Int. 2018;118:145–51.

    Article  CAS  Google Scholar 

  43. Hawkinson JE, Kimbrough CL, Belelli D, et al. Correlation of neuroactive steroid modulation of [35S]t-butylbicyclophosphorothionate and [3H]flunitrazepam binding and gamma-aminobutyric acidA receptor function. Mol Pharmacol. 1994;46:977–85.

    CAS  Google Scholar 

  44. Holubova K, Chvojkova M, Hrcka Krausova B, et al. Pitfalls of NMDA receptor modulation by neuroactive steroids. The effect of positive and negative modulation of NMDA receptors in an animal model of schizophrenia. Biomolecules. 2021;11:1026.

    Article  CAS  Google Scholar 

  45. Majewska MD, Harrison NL, Schwartz RD, et al. Steroid hormone metabolites are barbiturate-like modulators of the GABA receptor. Science. 1986;232:1004–7.

    Article  CAS  Google Scholar 

  46. Cole LM, Casida JE. Polychlorocycloalkane insecticide-induced convulsions in mice in relation to disruption of the GABA-regulated chloride ionophore. Life Sci. 1986;39:1855–62.

    Article  CAS  Google Scholar 

  47. Schottler C, Krisch K. Hydrolysis of steroid hormone esters by an unspecific carboxylesterase from pig liver microsomes. Biochem Pharmacol. 1974;23:2867–75.

    Article  CAS  Google Scholar 

  48. Gee KW, Lan NC. Gamma-aminobutyric acidA receptor complexes in rat frontal cortex and spinal cord show differential responses to steroid modulation. Mol Pharmacol. 1991;40:995–9.

    CAS  Google Scholar 

  49. Belelli D, Lambert JJ, Peters JA, et al. Modulation of human recombinant GABAA receptors by pregnanediols. Neuropharmacology. 1996;35:1223–31.

    Article  CAS  Google Scholar 

  50. Weir CJ, Ling AT, Belelli D, et al. The interaction of anaesthetic steroids with recombinant glycine and GABAA receptors. Br J Anaesth. 2004;92:704–11.

    Article  CAS  Google Scholar 

  51. Mareš P, Kudová E, Valeš K, et al. Three neurosteroids as well as GABAergic drugs do not convert immediate postictal potentiation to depression in immature rats. Pharmacol Rep. 2020;72:1573–8.

    Article  Google Scholar 

  52. Vyklický V, Krausová B, Černý J, et al. Block of NMDA receptor channels by endogenous neurosteroids: implications for the agonist induced conformational states of the channel vestibule. Sci Rep. 2015;5:10935.

    Article  Google Scholar 

  53. Hahn F. Analeptics. Pharmacol Rev. 1960;12:447–530.

    CAS  Google Scholar 

  54. Zhao C, Hwang SH, Buchholz BA, et al. GABAA receptor target of tetramethylenedisulfotetramine. Proc Natl Acad Sci USA. 2014;111:8607–12.

    Article  CAS  Google Scholar 

  55. Chern CR, Chern CJ, Velíšková J, et al. ACTON PROLONGATUM(R) suppresses spasms head to head with Acthar(R) Gel in the model of infantile spasms. Epilepsy Behav. 2020;105: 106950.

    Article  Google Scholar 

  56. Dingledine R, Kleckner NW, McBain CJ. The glycine coagonist site of the NMDA receptor. Adv Exp Med Biol. 1990;268:17–26.

    Article  CAS  Google Scholar 

  57. Johnson JW, Ascher P. Modulation of the NMDA response by glycine. In: Barnard EA, Costa E, editors. Allosteric modulation of amino acid receptors: therapeutic implications. New York: Raven; 1989. p. 259–64.

    Google Scholar 

  58. Košťálová T. Účinky neuroaktivního steroidu na motoriku mláďat laboratorního potkana [in Czech]; Effects of neuroactive steroid on motor behaviors in developing rats. Praha: Charles University, 2nd Faculty of Medicine; 2020.

Download references

Funding

This study was supported by the Institute of Organic Chemistry and Biochemistry Grant and NIH-NINDS award R21NS118337-01 to LV. MPS was supported by the NIH-CounterACT Program (R21NS084900). JV was supported by R01NS092786 from NIH-NINDS.

Author information

Authors and Affiliations

Authors

Contributions

EK, MPS, JV and LV conceptualized the work, analyzed and interpreted the data. C-RC, C-JC, AS, ML, HC, EK performed the experiments. All authors participated on drafting the manuscript and approved the final version.

Corresponding author

Correspondence to Libor Velíšek.

Ethics declarations

Conflict of interest

LV is a consultant for Angelini Pharma on topics unrelated to this project. Other co-authors have no conflicts to report besides the funding statement.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chern, CR., Lauková, M., Schonwald, A. et al. Novel neurosteroid pregnanolone pyroglutamate suppresses neurotoxicity syndrome induced by tetramethylenedisulfotetramine but is ineffective in a rodent model of infantile spasms. Pharmacol. Rep 75, 177–188 (2023). https://doi.org/10.1007/s43440-022-00437-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43440-022-00437-1

Keywords

Navigation