Skip to main content
Log in

Existence and stability of dissipative turbulent solutions to a simple bi-fluid model of compressible fluids

  • Published:
Journal of Elliptic and Parabolic Equations Aims and scope Submit manuscript

Abstract

Following Abbatiello et al. (DCCDS-A 41(1):1–28, 2020), we introduce dissipative turbulent solutions to a simple model of a mixture of two non interacting compressible fluids filling a bounded domain with general non zero inflow/outflow boundary conditions. We prove existence of such solutions for all adiabatic coefficients \(\gamma >1\), their compatibility with classical solutions, the relative energy inequality, and the weak–strong uniqueness principle in this class. The class of dissipative turbulent solutions is so far the largest class of generalized solutions which still enjoys the weak–strong uniqueness property.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. We suppose without loss of generality that the boundary data are restrictions to \(\partial \Omega\) of functions defined on \(\overline{\Omega }\).

  2. Here in the sequel, we skip the indexes \(\varepsilon\), n and write e.g. R instead of \(R_{\varepsilon ,n}\), etc. and will use eventually only one of them in the situations when it will be useful to underline the corresponding limit passage.

  3. The energy inequality (3.12) in [18, Lemma 4.2] and in [23, Section 4] is derived under assumption \(\Omega \in C^2\). This assumption is needed due to the treatment of the parabolic problem (3.33.5) via the classical maximal regularity methods. With Lemma 3.1 at hand, the same proof can be carried out without modifications also in Lipschitz domains.

References

  1. Abbatiello, A., Feireisl, E.: On a class of generalized solution to equations describing incompressible viscous fluids. Archive Preprint Series, arxiv preprint No. 1905.12732, To appear in Annal. Mat, Pura Appl (2019)

  2. Abbatiello, A., Feireisl, E., Novotny, A.: Generalized solutions to models of compressible viscous fluids. DCDS-A 41(1), 1–28 (2020)

    Article  MathSciNet  Google Scholar 

  3. Bresch, D., Desjardins, B., Ghidaglia, J.’M., Grenier, E., Hilliairet, M.: Multifluid models including compressible fluids. In Y. Giga and A. Novotný (Eds) Handbook of Mathematical Analysis in Mechanics of Viscous Fluids. pp. 52 (2018)

  4. Bresch, D., Mucha, P.B., Zatorska, E.: Finite-energy solutions for compressible two-fluid stokes system. Arch. Rat. Mech. Anal. arXiv:1709.03922. (on line first)

  5. Chang, T., Jin, B.J., Novotný, A.: Compressible Navier-Stokes system with general inflow-outflow boundary data. SIAM J. Math. Anal. 51(2), 1238–1278 (2019)

    Article  MathSciNet  Google Scholar 

  6. Chen, G.-Q., Torres, M., Ziemer, W.P.: Gauss-Green theorem for weakly differentiable vector fields, sets of finite perimeter, and balance laws. Comm. Pure Appl. Math. 62(2), 242–304 (2009)

    Article  MathSciNet  Google Scholar 

  7. Crippa, G., Donadello, C., Spinolo, L.V.: A note on the initial-boundary value problem for continuity equations with rough coefficients. HYP, conference proceedings. AIMS Ser. Appl. Math. 8(957–966), 2014 (2012)

    Google Scholar 

  8. Dafermos, C.M.: The second law of thermodynamics and stability. Arch. Rational Mech. Anal. 70, 167–179 (1979)

    Article  MathSciNet  Google Scholar 

  9. Evans, L.C.: Partial differential equations. Graduate Stud. Math. 19 AMS

  10. Evje, S., Karlsen, K.H.: Global existence of weak solutions for a viscous two-phase model. J. Differ. Equ. 245, 2660–2703 (2008)

    Article  MathSciNet  Google Scholar 

  11. Feireisl, E., Novotný, A.: Singular limits in thermodynamics of viscous fluids. Birkhäuser Verlag. Adv. Math. Fluid Mech. (2009)

  12. Feireisl, E.: Dynamics of Viscous Compressible Fluids. Oxford University Press, Oxford (2004)

    MATH  Google Scholar 

  13. Feireisl, E., Novotný, A., Petzeltová, H.: On the existence of globally defined weak solutions to the Navier-Stokes equations. J. Math. Fluid Mech. 3(4), 358–392 (2001)

    Article  MathSciNet  Google Scholar 

  14. Feireisl, E., Jin, B.J., Novotný, A.: Relative entropies, suitable weak solutions, and weak-strong uniqueness for the compressible Navier-Stokes system. J. Math. Fluid. Mech. 14(4), 717–730 (2012)

    Article  MathSciNet  Google Scholar 

  15. Feireisl, E., Gwiazda, P., Swiercewska-Gwiazda, A., Wiedemann, E.: Dissipative maesure-valued solutions to the compressible Navier-Stokes system. Calc. Var. 55, 141 (2016). https://doi.org/10.1007/s00526-016-1089-1

    Article  MATH  Google Scholar 

  16. Jin, B.J., Novotny, A.: Weak-strong uniqueness for a bi-fluid model for a mixture of non-interacting compressible fluids. J. Differ. Equ. 268, 204–238 (2019)

    Article  MathSciNet  Google Scholar 

  17. Kwon, Y.S., Kračmar, S.: Š. Nečasová, A. Novotny. Weak solutions for a bi-fluid model for a mixture of two compressible non interacting fluids with general boundary data. arXiv:2105.04843, (2021)

  18. Kwon, Y.S., Novotny, A.: Dissipative solutions to compressible Navier-Stokes equations with general inflow-outflow data: existence, stability and weak-strong uniqueness. J. Math. Fluid Mech. 23, 4 (2021). https://doi.org/10.1007/s00021-020-00531-5

    Article  MathSciNet  MATH  Google Scholar 

  19. Lighthill, M.J.: On sound generated aerodynamically I. General theory. Proc. R. Soc. Lond. A. 211, 564–587 (1952)

    Article  MathSciNet  Google Scholar 

  20. Lighthill, M.J.: On sound generated aerodynamically II. General theory. Proc. R. Soc. Lond. A. 222, 1–32 (1954)

    Article  Google Scholar 

  21. Lions, P.-L.: Mathematical Topics in Fluid Dynamics. Compressible Models, vol. 2. Oxford Science Publication, Oxford (1998)

    MATH  Google Scholar 

  22. Maltese, D., Michálek, M., Mucha, P.B., Novotný, A., Pokorný, M., Zatorska, E.: Existence of weak solutions for compressible Navier-Stokes equations with entropy transport. J. Differ. Equ. 261, 4448–4485 (2016)

    Article  MathSciNet  Google Scholar 

  23. Novotny, A.: Weak solutions for a bi-fluid model for a mixture of two compressible non interacting fluids. Sci China Math 63(12), 2399–2414 (2020)

    Article  MathSciNet  Google Scholar 

  24. Novotny, A., Pokorny, M.: Weak solutions for some compressible multicomponent fluid models. Arch. Ration. Mech. Anal. 235, 355–403 (2020)

    Article  MathSciNet  Google Scholar 

  25. Pedregal, P.: Parametrized Measures and Variational Principles. Birkhauser, Basel (1997)

    Book  Google Scholar 

  26. Rudin, W.: Real and Complex Analysis. McGraw-Hill, Singapore (1987)

    MATH  Google Scholar 

  27. Valli, A., Zajaczkowski, M.: Navier-Stokes equations for compressible fluids: Global existence and qualitative properties of the solutions in the general case. Comm. Math. Phys. 103, 259–296 (1986)

    Article  MathSciNet  Google Scholar 

  28. Vasseur, A., Wen, H., Yu, C.: Global weak solution to the viscous two-fluid model with finite energy. J. Math. Pures Appl. 125, 247–282 (2019)

    Article  MathSciNet  Google Scholar 

  29. Wen, H.: Global existence of weak solution to compressible two-fluid model without any domination condition in three dimensions. arXiv:1902.05190

Download references

Funding

The work of the first author was partially supported by NRF-2019R1A2C1086070. The work of the second author was partially supported by NRF2020R1F1A1A01049805. Š. N. has been supported by the Czech Science Foundation (GAČR) project GA19-04243S. The Institute of Mathematics, CAS is supported by RVO:67985840. The work of the fourth author was partially supported by the distinguished Eduard Čech visiting program at the Institute of Mathematics of the Academy of Sciences of the Czech Republic.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Šárka Nečasová.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

We recall here some key lemmas which we have used in the proofs and give more details concerning the meaning of the non-homogeneous boundary data.

The first lemma is proved in [2, Lemma 8.1].

Lemma 7.1

Let \(Q = (0,T) \times \Omega\), where \(\Omega \subset R^d\) is a bounded domain. Suppose that

$$\begin{aligned} r_n \rightarrow r \ \text{ weakly } \text{ in }\ L^p(Q), \ v_n \rightarrow v \ \text{ weakly } \text{ in }\ L^q(Q),\ p> 1, q > 1, \end{aligned}$$

and

$$\begin{aligned} r_n v_n \rightarrow w \ \text{ weakly } \text{ in }\ L^r(Q), \ r > 1. \end{aligned}$$

In addition, let

$$\begin{aligned}&\partial _t r_n = \mathrm{div}_x\mathbf{g}_n + h_n\ \text{ in }\ \mathcal {D}'(Q),\ \Vert \mathbf{g}_n \Vert _{L^s(Q;\, R^d)} {\mathop {\sim }\limits ^{<}}1,\ \\&\quad s> 1,\ h_n \ \text{ precompact } \text{ in }\ W^{-1,z},\ z > 1, \end{aligned}$$

and

$$\begin{aligned} \left\| \nabla _xv_n \right\| _{\mathcal {M}(Q;\, R^d)} {\mathop {\sim }\limits ^{<}}1 \ \text{ uniformly } \text{ for }\ n \rightarrow \infty . \end{aligned}$$

Then

$$\begin{aligned} w = r v \ \text{ a.a. } \text{ in }\ Q. \end{aligned}$$

The second lemma in Lemma 2.11 and Corollary 2.2 in Feireisl [12].

Lemma 7.2

Let \(O \subset \mathbb {R}^d\), \(d\ge 2\), be a measurable set and \(\{ \mathbf{v}_n \}_{n=1}^{\infty }\) a sequence of functions in \(L^1(O;\, \mathbb {R}^M)\) such that

$$\begin{aligned} \mathbf{v}_n \rightharpoonup \mathbf{v} \ \text{ in }\ L^1(O;\, \mathbb {R}^M). \end{aligned}$$

Let \(\Phi : R^M \rightarrow (-\infty , \infty ]\) be a lower semi-continuous convex function such that \(\Phi (\mathbf{v}_n)\) is bounded in \(L^1({ O})\).

Then \(\Phi (\mathbf{v}):O\mapsto R\) is integrable and

$$\begin{aligned} \int _{O} \Phi (\mathbf{v})\mathrm{d} x\le \liminf _{n\rightarrow \infty } \int _{O} \Phi (\mathbf{v}_n)\mathrm{d} x. \end{aligned}$$

The last lemma we wish to recall deals with the duals of Bochner spaces. Let X be a Banach space. For \(1\le p<\infty\), we introduce Bochner-type spaces

$$\begin{aligned}&L^p(I,X)=\{f:I\rightarrow X \text{ measurable, } \Vert f\Vert ^p_{L^p(I;\,X)}:=\int _I\Vert f(t)\Vert ^p_X\mathrm{d}t<\infty \}, \\&L_\mathrm{weak-*}^p(I,X^*)= \{f:I\rightarrow X^* \text{ weakly-* } \text{ measurable, } \\&\Vert f(\cdot )\Vert _{X^*} \text{ measurable, } \Vert f\Vert ^p_{L^p(I;\,X^*)}:=\int _I\Vert f(t)\Vert ^p_{X^*}\mathrm{d}t<\infty \}. \end{aligned}$$

They are Banach spaces with corresponding norms \(\Vert f\Vert ^p_{L^p(I;\,X)}\) resp;\, \(\Vert f\Vert ^p_{L^p(I;\,X^*)}\). It is not true in general that \((L^p(I,X))^*\) can be identified with \(L^{p'}(I,X^*)\), \(1/p+1/p'=1\). However, the following lemma holds, cf. Pedregal [25]:

Lemma 7.3

Let X be a separable Banach space. Then

$$\begin{aligned}(L^p(I,X))^*= L^{p'}_\mathrm{weak-*}(I,X^*)\end{aligned}$$

under the duality mapping

$$\begin{aligned}<f,g>=\int _I<f(t),g(t)>_{X^*,X}\mathrm{d}t. \end{aligned}$$

The particular case we are interested in this paper deal with

$$\begin{aligned} X=C(\overline{\Omega }),\;\,{\text{ whence }}\;\, X^*=\mathcal{M}(\overline{\Omega }), \end{aligned}$$

cf. Rudin [26, Theorem 2.14].

1.1 Non-homogeneous boundary data

Let us explain in details how to understand non-homogeneous Dirichlet boundary conditions. We will follow Lions [21], page 209. We will explain the meaning \(\mathbf{u}=\mathbf{u}_B\) on \(\partial \Omega \times (0,T)\) and \(r = r_B\) on \(\{(x,t)\in \partial \Omega , \mathbf{u}_B\cdot \mathbf{n} <0\}\). We assume that the boundary data \((r_B,\mathbf{u}_B)\) satisfy

$$\begin{aligned}&\mathbf{u}_B \in L^2(0,T;\,W^{1,2}(\Omega )) \cap L^{\infty }(0,T;\,L^{\frac{2\gamma }{\gamma - 1}}(\Omega )) \\&\text{ div } \mathbf{u}_B \in L^1(0,T;\,L^{\infty }(\Omega )), \mathbf{D}\mathbf{u}_B \in L^1(0,T;\,L^{\infty }(\Omega ))\end{aligned}$$

(\(\mathbf{D}\mathbf{u}_B\) we denote the symmetrical part of the stress tensor)

$$\begin{aligned} r_B \in L^{\gamma }(\partial \Omega \times (0,T);\, (\mathbf{u}_B \cdot \mathbf{n})^{-}) dS \otimes dt\end{aligned}$$

which means \(\int _0^T dt \int _{\partial \Omega } r_B ^{\gamma }(\mathbf{u}_B \cdot \mathbf{n})^{-} dS \otimes dt < \infty \). Since \(\mathbf{u}_B\) is trace of \(\mathbf{u}\) then \(\mathbf{u}- \mathbf{u}_B \in L^2(0,T;\,W^{1,2}_0(\Omega ))\).

With the density the situation is more complicated since there is no trace of r.

How to understand such case?

Taking the test function \(\phi\) in the weak formulation of the continuity equation, \(\phi\) smooth in \((0,T)\times \overline{\Omega }\), then together with regularity properties :

$$\begin{aligned} r\in L^{\infty }(0,T;\,L^{\gamma }), \sqrt{r}\mathbf{u}\in L^{\infty }(0,T;\, L^2(\Omega ))\end{aligned}$$

and

$$\begin{aligned}\mathbf{u}\in L^{2}(0,T;\,W^{1,2}(\Omega )), \end{aligned}$$

\(r (\mathbf{u}_B \cdot \mathbf{n})\) makes sense on \(\partial \Omega \times (0,T)\) as an element of the dual space of the space consisting of traces on \(\partial \Omega \times (0,T)\) of the following functional space \(\mathcal W\),

$$\begin{aligned} \begin{array}{l} \mathcal{W}= \{\phi ;\, \phi \in C([0,T];\,L^{\frac{\gamma }{\gamma - 1}}(\Omega )), \frac{\partial \phi }{\partial t} \in L^1(0,T;\,L^{\frac{\gamma }{\gamma - 1}}(\Omega )),\\ \phi \in L^1(0,T;\,W^{1,\frac{2\gamma }{\gamma -1}})(\Omega ))+L^2(0,T;\,W^{1,r}(\Omega ))\} \end{array} \end{aligned}$$
(7.1)

where \(1/r=5/6-1/\gamma\),\(\gamma > 6/5\). This implies that the boundary condition on r means

$$\begin{aligned}r(\mathbf{u}_B\cdot \mathbf{n})^{-} = r_B (\mathbf{u}_B\cdot \mathbf{n})^{-}.\end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, B., Kwon, YS., Nečasová, Š. et al. Existence and stability of dissipative turbulent solutions to a simple bi-fluid model of compressible fluids. J Elliptic Parabol Equ 7, 537–570 (2021). https://doi.org/10.1007/s41808-021-00137-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41808-021-00137-6

Keywords

Mathematics Subject Classification

Navigation