Skip to main content
Log in

\(L^p\)-strong solution to fluid-rigid body interaction system with Navier slip boundary condition

  • Published:
Journal of Elliptic and Parabolic Equations Aims and scope Submit manuscript

Abstract

We study a fluid-structure interaction problem describing movement of a rigid body inside a bounded domain filled by a viscous fluid. The fluid is modelled by the generalized incompressible Naiver–Stokes equations which include cases of Newtonian and non-Newtonian fluids. The fluid and the rigid body are coupled via the Navier slip boundary conditions and balance of forces at the fluid-rigid body interface. Our analysis also includes the case of the nonlinear slip condition. The main results assert the existence of strong solutions, in an \(L^p-L^q\) setting, globally in time, for small data in the Newtonian case, while existence of strong solutions in \(L^p\)-spaces, locally in time, is obtained for non-Newtonian case. The proof for the Newtonian fluid essentially uses the maximal regularity property of the associated linear system which is obtained by proving the \({\mathcal {R}}\)-sectoriality of the corresponding operator. The existence and regularity result for the general non-Newtonian fluid-solid system then relies upon the previous case. Moreover, we also prove the exponential stability of the system in the Newtonian case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

Notes

  1. The slip boundary conditions were introduced by Navier [48] (the linear version), later proposed independently by Maxwell [45].

References

  1. Acevedo, P., Amrouche, C., Conca, C., Ghosh, A.: Stokes and Navier–Stokes equations with Navier boundary condition

  2. Al Baba, H., Chemetov, N.V., Nečasová, Š, Muha, B.: Strong solutions in \(L^2\) framework for fluid-rigid body interaction problem. Mixed case. Topol. Methods Nonlinear Anal. 52(1), 337–350 (2018)

    MathSciNet  MATH  Google Scholar 

  3. Amann, H.: Linear and quasilinear parabolic problems. Abstract linear theory, vol. I, Monographs in Mathematics, vol.  89. Birkhäuser Boston, Inc., Boston (1995)

  4. Amrouche, C., Escobedo, M., Ghosh, A.: Semigroup theory for the Stokes operator with Navier boundary condition on \(l^p\)-spaces

  5. Bellout, H., Bloom, F., Nečas, J.: Young measure-valued solutions for non-Newtonian incompressible fluids. Commun. Partial Differ. Equ. 19(11–12), 1763–1803 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bellout, H., Bloom, F.: Incompressible bipolar and non-Newtonian viscous fluid flow. Advances in Mathematical Fluid Mechanics. Birkhäuser, Springer, Cham (2014)

    Book  MATH  Google Scholar 

  7. Bensoussan, A., Da Prato, G., Delfour, M.C., Mitter, S.K.: Representation and control of infinite-dimensional systems. Vol. 1. Systems & Control: Foundations & Applications. Birkhäuser Boston, Inc., Boston (1992)

  8. Bothe, D., Prüss, J.: \(L_P\)-theory for a class of non-Newtonian fluids. SIAM J. Math. Anal. 39(2), 379–421 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bourgain, J.: Some remarks on Banach spaces in which martingale difference sequences are unconditional. Ark. Mat. 21(2), 163–168 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bravin, M.: On the weak uniqueness of “viscous incompressible fluid + rigid body’’ system with Navier-slip-with-friction conditions in a 2d bounded domain. J. Math. Fluid Mech. 21(2), 1–31 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  11. Burkholder, D.L.: A geometric condition that implies the existence of certain singular integrals of Banach-space-valued functions. In: Conference on Harmonic Analysis in Honor of Antoni Zygmund, vols. I, II (Chicago, Ill., 1981), Wadsworth Math. Ser., pp. 270–286. Wadsworth, Belmont (1983)

  12. Chemetov, N.V., Nečasová, Š: The motion of the rigid body in the viscous fluid including collisions. Global solvability result. Nonlinear Anal. Real World Appl. 34, 416–445 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  13. Chemetov, N.V., Nečasová, Š, Muha, B.: Weak-strong uniqueness for fluid-rigid body interaction problem with slip boundary condition. J. Math. Phys. 60(1), 011505 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  14. Ciarlet, P.G.: Mathematical elasticity. Three-dimensional elasticity. Vol. I, Studies in Mathematics and its Applications, vol. 20. North-Holland Publishing Co., Amsterdam (1988)

  15. Clément, P., Prüss, J.: An operator-valued transference principle and maximal regularity on vector-valued \(L_p\)-spaces. Lecture Notes in Pure and Appl, vol. 215. Math. Dekker, New York (2001)

  16. Cumsille, P., Takahashi, T.: Wellposedness for the system modelling the motion of a rigid body of arbitrary form in an incompressible viscous fluid. Czechoslovak Math. J. 58(133)(4), 961–992 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  17. Da Prato, G., Grisvard, P.: Sommes d’opérateurs linéaires et équations différentielles opérationnelles. J. Math. Pures Appl. (9) 54(3), 305–387 (1975)

  18. Denk, R., Hieber, M., Prüss, J.: R-boundedness, Fourier multipliers and problems of elliptic and parabolic type. Mem. Am. Math. Soc. 166(788), viii+114 (2003)

    MathSciNet  MATH  Google Scholar 

  19. Di Nezza, E., Palatucci, G., Valdinoci, E.: Hitchhiker’s guide to the fractional Sobolev spaces. Bull. Sci. Math. 136(5), 521–573 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  20. Dintelmann, E., Geissert, M., Hieber, M.: Strong \(L^p\)-solutions to the Navier–Stokes flow past moving obstacles: the case of several obstacles and time dependent velocity. Trans. Am. Math. Soc. 361(2), 653–669 (2009)

    MATH  Google Scholar 

  21. Dore, G.: \(L^p\) regularity for abstract differential equations. In: Functional Analysis and Related Topics, 1991 (Kyoto), Lecture Notes in Math., vol. 1540, pp. 25–38. Springer, Berlin (1993)

  22. Dore, G., Venni, A.: On the closedness of the sum of two closed operators. Math. Z. 196(2), 189–201 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  23. Dussan, E.B., The, V.: moving contact line: the slip boundary condition. J. Fluid Mech. 77(4), 665–684 (1976)

    Article  MATH  Google Scholar 

  24. Engel, K., Nagel, R.: One-parameter semigroups for linear evolution equations, Graduate Texts in Mathematics, vol. 194. Springer, New York (2000) (With contributions by S. Brendle, M. Campiti, T. Hahn, G. Metafune, G. Nickel, D. Pallara, C. Perazzoli, A. Rhandi, S. Romanelli and R. Schnaubelt)

  25. Evans, L.C.: Partial Differential Equations. Graduate Studies in Mathematics, vol. 19. American Mathematical Society, Providence (1998)

  26. Feireisl, E., Hillairet, M., Nečasová, Š: On the motion of several rigid bodies in an incompressible non-Newtonian fluid. Nonlinearity 21(6), 1349–1366 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  27. Galdi, G.P.: On the motion of a rigid body in a viscous liquid: a mathematical analysis with applications. In: Handbook of Mathematical Fluid Dynamics, vol. I, pp. 653–791. North-Holland, Amsterdam (2002)

  28. Geissert, M., Götze, K., Hieber, M.: \(L^p\)-theory for strong solutions to fluid-rigid body interaction in Newtonian and generalized Newtonian fluids. Trans. Am. Math. Soc. 365(3), 1393–1439 (2013)

    Article  MATH  Google Scholar 

  29. Gérard-Varet, D., Hillairet, M.: Existence of weak solutions up to collision for viscous fluid-solid systems with slip. Commun. Pure Appl. Math. 67(12), 2022–2075 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  30. Gérard-Varet, D., Hillairet, M., Wang, C.: The influence of boundary conditions on the contact problem in a 3d Navier–Stokes flow. J. Math. Pures Appl. 9(1), 1–38 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  31. Hillairet, M.: Lack of collision between solid bodies in a 2D incompressible viscous flow. Commun. Partial Differ. Equ. 32(7–9), 1345–1371 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  32. Inoue, A., Wakimoto, M.: On existence of solutions of the Navier–Stokes equation in a time dependent domain. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 24(2), 303–319 (1977)

    MathSciNet  MATH  Google Scholar 

  33. Kalousek, M., Mǎcha, V., Nečasová, Š.: Local-in-time existence of strong solutions to a class of compressible non-Newtonian Navier–Stokes equations. arXiv:2012.01795

  34. Kato, T., Fujita, H.: On the nonstationary Navier–Stokes system. Rend. Sem. Mat. Univ. Padova 32, 243–260 (1962)

    MathSciNet  MATH  Google Scholar 

  35. Koplik, J., Banavar, J.R.: Corner flow in the sliding plate problem. Phys. Fluids 7(12), 3118–3125 (1995)

    Article  MATH  Google Scholar 

  36. Kunstmann, P.C., Weis, L.: Perturbation theorems for maximal \(L_p\)-regularity. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 30(2), 415–435 (2001)

    MathSciNet  MATH  Google Scholar 

  37. Kunstmann, P.C., Weis, L.: Maximal \(L_p\)-regularity for parabolic equations, Fourier multiplier theorems and \(H^\infty \)-functional calculus. In: Functional Analytic Methods for Evolution Equations, Lecture Notes in Math., vol. 1855, pp. 65–311. Springer, Berlin (2004)

  38. Kunstmann, P.C., Weis, L.: Perturbation theorems for maximal \(L_p\)-regularity. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 30(2), 415–435 (2001)

    MathSciNet  MATH  Google Scholar 

  39. Ladyženskaja, O.A., Solonnikov, V.A., Uralceva, N.N.: Linear and quasilinear equations of parabolic type. Translated from the Russian by S. Smith. Translations of Mathematical Monographs, vol. 23. American Mathematical Society, Providence (1968)

  40. Lewandowski, R., Pinier, B., Mémin, E., Chandramouli, P.: Testing a one-closure equation turbulence model in neutral boundary layers (2018)

  41. Maity, D., Tucsnak, M.: A maximal regularity approach to the analysis of some particulate flows. In: Particles in Flows, Adv. Math. Fluid Mech., pp. 1–75. Birkhäuser/Springer, Cham (2017)

  42. Maity, D., Tucsnak, M.: \(L^p\)-\(L^q\) maximal regularity for some operators associated with linearized incompressible fluid-rigid body problems. In: Mathematical Analysis in Fluid Mechanics—Selected Recent Results, Contemp. Math., vol. 710, pp. 175–201. Amer. Math. Soc., Providence (2018)

  43. Málek, J., Nečas, J., Rokyta, M., Ružička, M.: Weak and Measure-valued Solutions to Evolutionary PDEs. Applied Mathematics and Mathematical Computation. Chapman and Hall, London (1996)

    MATH  Google Scholar 

  44. Matthews, M.T., Hill, J.M.: Newtonian flow with nonlinear Navier boundary condition. Acta Mech. 191(3), 195–217 (2007)

    Article  MATH  Google Scholar 

  45. Maxwell, J.C.: On stresses in rarefied gases arising from inequalities of temperature [abstract]. Proc. R. Soc. Lond. 27, 304–308 (1878)

    Article  MATH  Google Scholar 

  46. Muha, B., Nečasová, Š., Radošević, A.: A uniqueness result for 3d incompressible fluid-rigid body interaction problem (2019). arXiv:1904.05102

  47. Muha, B., Čanić, S.: Existence of a weak solution to a fluid-elastic structure interaction problem with the Navier slip boundary condition. J. Differ. Equ. 260(12), 8550–8589 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  48. Navier, C.L.M.H.: Mémoire sur les lois du mouvement des fluides. Mém. Acad. Sci. Inst. de France 2, 389–440 (1823)

    Google Scholar 

  49. Obando, B., Takahashi, T.: Existence of weak solutions for a Bingham fluid-rigid body system. Ann. Inst. H. Poincaré Anal. Non Linéaire 36(5), 1281–1309 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  50. Ogawa, T., Shimizu, S.: Maximal \(L^1\)-regularity for parabolic boundary value problems with inhomogeneous data in the half-space. Proc. Japan Acad. Ser. A Math. Sci. 96(7), 57–62 (2020)

    MathSciNet  MATH  Google Scholar 

  51. Prüss, J.: Maximal regularity for evolution equations in \(L_p\)-spaces. Conf. Semin. Mat. Univ. Bari 285, 1–39 (2003)

  52. Prüss, J., Simonett, G.: Moving Interfaces and Quasilinear Parabolic Evolution Equations, Monographs in Mathematics, vol. 105. Birkhäuser/Springer, Cham (2016)

  53. Raymond, J.: Feedback stabilization of a fluid-structure model. SIAM J. Control. Optim. 48(8), 5398–5443 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  54. Shibata, Y., Shimizu, S.: On the maximal \(L_p\)-\(L_q\) regularity of the Stokes problem with first order boundary condition; model problems. J. Math. Soc. Japan 64(2), 561–626 (2012)

    MathSciNet  MATH  Google Scholar 

  55. Starovoitov, V.N.: Behavior of a rigid body in an incompressible viscous fluid near a boundary. In: Free Boundary Problems (Trento, 2002), Internat. Ser. Numer. Math., vol. 147, pp. 313–327. Birkhäuser, Basel (2004)

  56. Takahashi, T.: Analysis of strong solutions for the equations modeling the motion of a rigid-fluid system in a bounded domain. Adv. Differ. Equ. 8(12), 1499–1532 (2003)

    MathSciNet  MATH  Google Scholar 

  57. Takahashi, T., Tucsnak, M.: Global strong solutions for the two-dimensional motion of an infinite cylinder in a viscous fluid. J. Math. Fluid Mech. 6(1), 53–77 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  58. Thompson, P.A., Troian, S.M.: A general boundary condition for liquid flow at solid surfaces. Nature 389, 360–362 (1997)

    Article  Google Scholar 

  59. Triebel, H.: Theory of Function Spaces. II. Monographs in Mathematics, vol. 84. Birkhäuser Verlag, Basel (1992)

  60. Wang, C.: Strong solutions for the fluid-solid systems in a 2-D domain. Asymptot. Anal. 89(3–4), 263–306 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  61. Weis, L.: Operator-valued Fourier multiplier theorems and maximal \(L_p\)-regularity. Math. Ann. 319(4), 735–758 (2001)

    MathSciNet  MATH  Google Scholar 

  62. Wróblewska-Kamińska, A.: Existence result for the motion of several rigid bodies in an incompressible non-Newtonian fluid with growth conditions in orlicz spaces. Nonlinearity 27(4), 685 (2014)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The works of Amrita Ghosh and Šárka Nečasová were supported by the Czech Science Foundation grant GA19-04243S in the framework of RVO 67985840 and the work of Boris Muha was supported by the Croatian Science Foundation (Hrvatska zaklada za znanost) Grant IP-2018-01-3706.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Šárka Nečasová.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Change of variables

Appendix: Change of variables

In this section we summarize main facts about the change of variables used to transform the problem to the fixed reference domain. Let us first assume that

$$\begin{aligned} \Vert \varvec{h}\Vert _{L^\infty (0,\infty ;{{\mathbb {R}}}^3)} + \Vert Q-I_3\Vert _{L^\infty (0,\infty ;{{\mathbb {R}}}^3)} \text {diam}(\Omega _S(0))\le \frac{\beta }{2}. \end{aligned}$$
(7.1)

This implies \(\text {dist}(\Omega _S(t),\partial \Omega )\ge \beta /2\) for all \(t\in [0,\infty )\). For all \(\mu >0\), we denote,

$$\begin{aligned} \Omega _\mu = \{\varvec{x}\in \Omega : \text {dist}(\varvec{x},\partial \Omega )>\mu \}. \end{aligned}$$

Now we consider a a cut-off function \(\psi \in C^\infty ({{\mathbb {R}}}^3,{{\mathbb {R}}})\) with compact support contained in \(\Omega _{\beta /8}\) and equal to 1 in \({\overline{\Omega }}_{\beta /4}\). Let us also introduce the functions \(\varvec{w}:{{\mathbb {R}}}^3\times [0,T] \rightarrow {{\mathbb {R}}}^3\) as

$$\begin{aligned} \varvec{w}(\varvec{x},t) = \varvec{l}(t)\times (\varvec{x}-\varvec{h}(t))+\frac{|\varvec{x}-\varvec{h}(t)|^2}{2} \varvec{\omega }(t) \end{aligned}$$

and \(\Lambda : {{\mathbb {R}}}^3\times [0,T] \rightarrow {{\mathbb {R}}}^3\) defined as

$$\begin{aligned} \begin{aligned} \Lambda (\varvec{x},t) = \psi (\varvec{x}) \left( \varvec{l}(t)+\varvec{\omega }(t)\times (\varvec{x} - \varvec{h}(t))\right) + \begin{pmatrix} \frac{\partial \psi }{\partial x_2}(\varvec{x})w_3(\varvec{x},t) - \frac{\partial \psi }{\partial x_3}(\varvec{x})w_2(\varvec{x},t)\\ \frac{\partial \psi }{\partial x_3}(\varvec{x})w_1(\varvec{x},t) - \frac{\partial \psi }{\partial x_1}(\varvec{x})w_3(\varvec{x},t)\\ \frac{\partial \psi }{\partial x_1}(\varvec{x})w_2(\varvec{x},t) - \frac{\partial \psi }{\partial x_2}(\varvec{x})w_1(\varvec{x},t) \end{pmatrix}. \end{aligned} \end{aligned}$$
(7.2)

With these definitions, \(\Lambda \) satisfies the following lemma (cf. [16, Lemma 2.1]):

Lemma 7.1

Let \(\varvec{w}\) and \(\Lambda \) be defined as above. Then, we have

  1. (1)

    \(\Lambda = 0\) outside \(\Omega _{\beta /8}\).

  2. (2)

    \({\mathrm {div}}\ \Lambda = 0\) in \({{\mathbb {R}}}^3\times [0,T]\).

  3. (3)

    \(\Lambda (\varvec{x},t) =\varvec{l}(t)+\varvec{\omega }(t)\times (\varvec{x} - \varvec{h}(t))\) for all \(\varvec{x}\in \Omega _S(t)\) and \(t\in [0,T]\).

  4. (4)

    \(\Lambda \in C({{\mathbb {R}}}^3\times [0,T],{{\mathbb {R}}}^3)\). \(\text {Moreover}\), for all \(t\in [0,T], \Lambda (\cdot , t)\) is a \(C^\infty \) function and for all \(\varvec{x}\in {{\mathbb {R}}}^3\), \(\Lambda (\varvec{x},\cdot )\in H^1([0,T],{{\mathbb {R}}}^3)\).

Next consider X be the flow associated to \(\Lambda \), satisfying the differential equation

$$\begin{aligned} \begin{aligned} \frac{\partial X}{\partial t}(\varvec{y}, t)&= \Lambda (X(\varvec{y},t), t), \quad t>0\\ X(\varvec{y},0)&= \varvec{y} \in {{\mathbb {R}}}^3. \end{aligned} \end{aligned}$$
(7.3)

We have the following result, proved in [16, Lemma 2.2].

Lemma 7.2

For all \(\varvec{y}\in {{\mathbb {R}}}^3\), the initial value problem (7.3) admits a unique solution \(X(\varvec{y}, \cdot ):[0,T]\rightarrow {{\mathbb {R}}}^3\) which is a \(C^1\) function in [0, T]. Moreover, we have the following properties,

  1. (1)

    For all \(t\in [0,T]\), the mapping \(\varvec{y}\mapsto X(\varvec{y},t)\) is a \(C^\infty \)-diffeomorphism from \({{\mathbb {R}}}^3\) onto itself and from \(\Omega _F(0)\) onto \(\Omega _F(t)\).

  2. (2)

    Denote by \(Y(\cdot , t)\) the inverse of \(X(\cdot ,t)\). Then, for all \(\varvec{x}\in {{\mathbb {R}}}^3\), the mapping \(t\mapsto Y(\varvec{x},t)\) is a \(C^1\) function in [0, T].

  3. (3)

    For all \(\varvec{y}\in {{\mathbb {R}}}^3\) and for all \(t\in [0,T]\), the determinant of the Jacobian matrix \(J_X\) of \(X(\cdot ,t)\) is equal to 1, that is,

    $$\begin{aligned} \mathrm {det} \ J_X(\varvec{y},t) = 1. \end{aligned}$$

From here onwards, \(J_X\) and \(J_Y\) denote the jacobian matrix of X and Y respectively, that is,

$$\begin{aligned} J_X = \left( \frac{\partial X_i}{\partial y_j} \right) _{ij} \quad \text { and }\quad J_Y = \left( \frac{\partial Y_i}{\partial x_j}\right) _{ij} . \end{aligned}$$

Note that, for each \(\varvec{y}\in \Omega _S(0)\), the function \(X(\varvec{y},t) = \varvec{h}(t) + Q(t)\varvec{y}, t\ge 0\) is the solution of (7.3), which is easy to verify. This implies, on \(\overline{\Omega _S(0)}\),

$$\begin{aligned} J_X = Q \quad \text { and consequently, } \quad J_Y = Q^T. \end{aligned}$$
(7.4)

Similarly, on \(\partial \Omega \), \(X(\varvec{y},t) = \varvec{y}, t\ge 0\) which yields \(J_X = I_3 = J_Y\).

Let us now define the functions: for \((\varvec{y},t)\in \Omega _F(0)\times (0,\infty )\),

$$\begin{aligned} {\left\{ \begin{array}{ll} \begin{aligned} {\tilde{\varvec{u}}}(\varvec{y},t) &{}= Q^{-1}(t) \ \varvec{u}(X(\varvec{y},t),t),\\ {\tilde{\pi }}(\varvec{y},t) &{}= \pi (X(\varvec{y},t),t),\\ \tilde{\varvec{l}}(t) &{}= Q^{-1}(t) \ \varvec{l}(t),\\ \tilde{\varvec{\omega }}(t) &{}= Q^{-1}(t) \ \varvec{\omega }(t)\\ {\tilde{J}} &{}= Q^{-1}(t) J(t) Q(t)\\ \tilde{\varvec{n}}(\varvec{y},t) &{}= Q^{-1}(t)\varvec{n}(X(\varvec{y},t),t). \end{aligned} \end{array}\right. } \end{aligned}$$
(7.5)

Notice that \(\tilde{\varvec{n}}\) becomes the outward normal at \(\Omega _F(0)\). Also, from (1.1) and (7.5)\(_4\), it easily follows that

$$\begin{aligned} {\dot{Q}}(t) \varvec{a} = Q(t) (\tilde{\varvec{\omega }}\times \varvec{a}) \quad \forall \varvec{a}\in {{\mathbb {R}}}^3. \end{aligned}$$
(7.6)

In these new variables, the time derivative is transformed into

$$\begin{aligned} \partial _t u_i= & \, ({\dot{Q}}{\tilde{\varvec{u}}})_i + (Q\partial _t {\tilde{\varvec{u}}})_i + (\partial _t X\cdot J_Y^T \nabla )(Q{\tilde{\varvec{u}}})_i \\= & \, \left( Q({\tilde{\omega }}\times {\tilde{\varvec{u}}})\right) _i + (Q\partial _t {\tilde{\varvec{u}}})_i + (\partial _t X\cdot J_Y^T \nabla )(Q{\tilde{\varvec{u}}})_i , \end{aligned}$$

the convection term is transformed into

$$\begin{aligned} (\varvec{u}\cdot \nabla _x)u_i = \left( (Q{\tilde{\varvec{u}}})\cdot (J_Y^T\nabla _y)\right) (Q{\tilde{\varvec{u}}})_i , \end{aligned}$$

the diffusion term is transformed into

$$\begin{aligned} \Delta _x u_i =\sum _{m,l,j} \frac{\partial (Q{\tilde{\varvec{u}}})_i}{\partial y_l} \frac{\partial Y_m}{\partial x_j} \frac{\partial }{\partial y_m}\left( \frac{\partial Y_l}{\partial x_j}\right) + \sum _{m,l,j}\frac{\partial ^2 (Q{\tilde{\varvec{u}}})_i}{\partial y_m \partial y_l} \frac{\partial Y_l}{\partial x_j} \frac{\partial Y_m}{\partial x_j} , \end{aligned}$$

and the pressure is transformed to,

$$\begin{aligned} (\nabla \pi )_i = (J_Y^T \nabla _y{\tilde{\pi }})_i. \end{aligned}$$

Furthermore, we obtain

$$\begin{aligned} {\mathrm {div}}\ \varvec{u}= \nabla _y {\tilde{\varvec{u}}}: (J_Y Q)^T \end{aligned}$$

which can also be written as, by Piola’s identity (cf. [14, p. 39], [25, Ch. 8.1.4.b]),

$$\begin{aligned} \nabla _y {\tilde{\varvec{u}}}: (J_Y Q)^T = {\mathrm {div}}_y\left( (J_Y Q){\tilde{\varvec{u}}}\right) \end{aligned}$$

since \(J_Y Q = \mathrm {cof} (Q J_X) = \mathrm {cof}\nabla _y (QX)\) because of \(\mathrm {det}J_X =1 \). Concerning the boundary condition, we calculate the symmetric gradient,

$$\begin{aligned} (\nabla _x \varvec{u})_{ij} = \partial _j u_i = \sum _{l=1}^3 \frac{ \partial (Q{\tilde{\varvec{u}}})_i}{\partial y_l} \frac{\partial Y_l}{\partial x_j} = \sum _{l,k=1}^3 Q_{ik} \frac{\partial {\tilde{\varvec{u}}}_k}{\partial y_l} \frac{\partial Y_l}{\partial x_j} = (Q \nabla _y {\tilde{\varvec{u}}} J_Y)_{ij}. \end{aligned}$$

This shows that at the interface \(\partial \Omega _S(0)\), because of (7.4), \(\nabla _x \varvec{u}= Q \, \nabla _y {\tilde{\varvec{u}}} \, Q^{T}\) and hence, \((\nabla _x \varvec{u})^T = Q (\nabla _y {\tilde{\varvec{u}}})^T Q^{T}\) which gives,

$$\begin{aligned} {\mathbb {D}}_x\varvec{u}= Q \,{\mathbb {D}}_y{\tilde{\varvec{u}}}\, Q^T \end{aligned}$$

and consequently,

$$\begin{aligned} \sigma (\varvec{u},\pi ) = Q\sigma ({\tilde{\varvec{u}}},{\tilde{\pi }})Q^T . \end{aligned}$$

Therefore, the slip boundary condition becomes,

$$\begin{aligned}{}[\sigma ({\tilde{\varvec{u}}},{\tilde{\pi }}){\tilde{\varvec{n}}}]_{\varvec{\tau }} + \alpha {\tilde{\varvec{u}}}_{\varvec{\tau }} = \alpha \left( \tilde{\varvec{l}}+\tilde{\varvec{\omega }}\times \varvec{y}\right) _{\varvec{\tau }} \quad \text { on } \quad \partial \Omega _S(0) \end{aligned}$$

and similarly at \(\partial \Omega \). It can be shown as in [32, Theorem 2.5] that the fluid part of the original problem (2.1) admits a strong solution \((\varvec{u},\pi )\) if and only if there exists a corresponding solution \(({\tilde{\varvec{u}}},{\tilde{\pi }}) \in W^{2,1}_{q,p}(Q^\infty _F) \times L^p(0,\infty ;W^{1,q}(\Omega _F(0)))\) to the fluid part of the transformed problem (7.7).

Next, we write the equations for rigid body. From (7.5)\(_3\), we find that

$$\begin{aligned} m\varvec{l}^{\prime}(t) = m ({\dot{Q}}\tilde{\varvec{l}}+ Q\tilde{\varvec{l}}^{\prime})= mQ(\tilde{\varvec{\omega }}\times \tilde{\varvec{l}}) + mQ \tilde{\varvec{l}}^{\prime}. \end{aligned}$$

Moreover, we have

$$\begin{aligned} \int \displaylimits _{\partial \Omega _S(t)}{\sigma (\varvec{u},\pi )\varvec{n}} = Q \int \displaylimits _{\partial \Omega _S(0)}{\sigma ({\tilde{\varvec{u}}},{\tilde{\pi }}){\tilde{n}}} \end{aligned}$$

and

$$\begin{aligned} \int \displaylimits _{\partial \Omega _S(t)}{(\varvec{x} - \varvec{h}(t))\times \sigma (\varvec{u},\pi )\varvec{n}} = Q \int \displaylimits _{\partial \Omega _S(0)}{\varvec{y}\times \sigma ({\tilde{\varvec{u}}},{\tilde{\pi }}){\tilde{n}}}. \end{aligned}$$

Therefore, the equation of linear momentum becomes,

$$\begin{aligned} m \tilde{\varvec{l}}' +m \tilde{\varvec{\omega }} \times \tilde{\varvec{l}}= - \int \displaylimits _{\partial \Omega _S(0)}{\sigma ({\tilde{\varvec{u}}},{\tilde{\pi }}){\tilde{\varvec{n}}}}. \end{aligned}$$

Similarly, using the following identity, for any special orthogonal matrix \(M\in SO(3),\)

$$\begin{aligned} Ma \times Mb = M(a\times b) \quad \forall a,b \in {{\mathbb {R}}}^3, \end{aligned}$$

the equation of angular momentum becomes,

$$\begin{aligned} {\tilde{J}} \tilde{\varvec{\omega }}^{\prime}(t) - {\tilde{J}} \tilde{\varvec{\omega }}\times \tilde{\varvec{\omega }} = - \int \displaylimits _{\partial \Omega _S(0)}{\varvec{y}\times \sigma ({\tilde{\varvec{u}}},{\tilde{\pi }}){\tilde{\varvec{n}}}}. \end{aligned}$$

Note that, \({\tilde{J}}\) is independent of time, since

$$\begin{aligned} {\tilde{J}}a\cdot b = \int \displaylimits _{\partial \Omega _S(0)}{\rho _S(\varvec{y})(a\times \varvec{y})\cdot (b\times \varvec{y})\mathrm {d}y} \quad \forall a,b\in {{\mathbb {R}}}^3. \end{aligned}$$

Therefore, on the cylindrical domain \(\Omega _F(0)\times (0,T)\), the coupled system for the Newtonian fluid (2.1) transforms into,

$$\begin{aligned} {\left\{ \begin{array}{ll} \begin{aligned} {\tilde{\varvec{u}}}_t - \Delta {\tilde{\varvec{u}}} + \nabla {\tilde{\pi }} &{}= \varvec{F}_0({\tilde{\varvec{u}}}, {\tilde{\pi }}, \tilde{\varvec{l}}, \tilde{\varvec{\omega }})\ &{}&{}\text { in } \Omega _F(0)\times (0,T),\\ {\mathrm {div}}\ {\tilde{\varvec{u}}} &{}= {\mathcal {G}}({\tilde{\varvec{u}}}, \tilde{\varvec{l}}, \tilde{\varvec{\omega }}) = {\mathrm {div}}\ \varvec{H}({\tilde{\varvec{u}}}, \tilde{\varvec{l}}, \tilde{\varvec{\omega }}) \ &{}&{}\text { in } \Omega _F(0)\times (0,T),\\ {\tilde{\varvec{u}}}&{}=\varvec{0} \ &{}&{}\text { on } \ \partial \Omega \times (0,T),\\ {\tilde{\varvec{u}}}\cdot {\tilde{\varvec{n}}}={\tilde{\varvec{u}}}_S\cdot {\tilde{\varvec{n}}}, \quad &{}\left[ \sigma ({\tilde{\varvec{u}}},{\tilde{\pi }}){\tilde{\varvec{n}}}\right] _{\varvec{\tau }}+\alpha {\tilde{\varvec{u}}}_{\varvec{\tau }}=\alpha {\tilde{\varvec{u}}}_{S\varvec{\tau }} \ &{}&{}\text { on } \ \partial \Omega _S(0) \times (0,T),\\ m \tilde{\varvec{l}}' &{}= - \int \displaylimits _{\partial \Omega _S(0)}{\sigma ({\tilde{\varvec{u}}},{\tilde{\pi }}){\tilde{\varvec{n}}}} + \varvec{F}_1(\tilde{\varvec{l}},\tilde{\varvec{\omega }}), \ &{}&{}\ t\in (0,T),\\ {\tilde{J}} \tilde{\varvec{\omega }}' &{}= - \int \displaylimits _{\partial \Omega _S(0)}{\varvec{y}\times \sigma ({\tilde{\varvec{u}}},{\tilde{\pi }}){\tilde{\varvec{n}}}} + \varvec{F}_2(\tilde{\varvec{\omega }}), \ &{}&{}\ t\in (0,T),\\ {\tilde{\varvec{u}}}(0) &{}= \varvec{u}_0 \ &{}&{}\text { in } \ \Omega _F(0),\\ \tilde{\varvec{l}}( 0) = \varvec{l}_0, \quad &{}\tilde{\varvec{\omega }}(0) = \varvec{\omega }_0 \end{aligned} \end{array}\right. } \end{aligned}$$
(7.7)

where

$$\begin{aligned}&{\tilde{\varvec{u}}}_S := \tilde{\varvec{l}} + \tilde{\varvec{\omega }}\times \varvec{y} ;(\varvec{F}_0)_{i}({\tilde{\varvec{u}}}, {\tilde{\pi }}, \tilde{\varvec{l}}, \tilde{\varvec{\omega }}) := \left( (I_3-Q)\partial _t {\tilde{\varvec{u}}}\right) _i - \left( Q(\tilde{\varvec{\omega }}\times {\tilde{\varvec{u}}}) \right) _i \nonumber \\& \qquad-(\partial _t X\cdot J_Y^T \nabla )(Q{\tilde{\varvec{u}}})_i - \left( (Q{\tilde{\varvec{u}}})\cdot (J_Y^T\nabla )\right) (Q{\tilde{\varvec{u}}})_i \nonumber \\& \qquad+ \sum _{m,l,j} \frac{\partial (Q{\tilde{\varvec{u}}})_i}{\partial y_l} \frac{\partial Y_m}{\partial x_j} \frac{\partial }{\partial y_m}\left( \frac{\partial Y_l}{\partial x_j}\right) \nonumber \\& \qquad+ \sum _{m,l,j}\frac{\partial ^2 (Q{\tilde{\varvec{u}}})_i}{\partial y_m \partial y_l} \frac{\partial Y_l}{\partial x_j} \frac{\partial Y_m}{\partial x_j} -\Delta {\tilde{\varvec{u}}} _i\nonumber \\& \qquad+\left( (I_3 -J^T_Y)\nabla {\tilde{\pi }}\right) _i ; \end{aligned}$$
(7.8)
$$\begin{aligned}&{\mathcal {G}}({\tilde{\varvec{u}}}, \tilde{\varvec{l}}, \tilde{\varvec{\omega }}) := \nabla {\tilde{\varvec{u}}}: (I_3 - (J_Y Q)^T) = {\mathrm {div}}\ \varvec{H} \quad \text { with } \quad \varvec{H}({\tilde{\varvec{u}}}, \tilde{\varvec{h}}, \tilde{\varvec{\omega }}) := (I_3-J_YQ) \tilde{\varvec{u}} ; \end{aligned}$$
(7.9)
$$\begin{aligned}&\varvec{F}_1(\tilde{\varvec{l}},\tilde{\varvec{\omega }}) := -m \tilde{\varvec{\omega }} \times \tilde{\varvec{l}} ; \end{aligned}$$
(7.10)
$$\begin{aligned}&\varvec{F}_2(\tilde{\varvec{\omega }}) := {\tilde{J}} \tilde{\varvec{\omega }}\times \tilde{\varvec{\omega }}. \end{aligned}$$
(7.11)

Note that a solution \(({\tilde{\varvec{u}}},{\tilde{\pi }},\tilde{\varvec{l}},\tilde{\varvec{\omega }})\) to (7.7) yields a solution \((\varvec{u},\pi ,\varvec{l},\varvec{\omega })\) to (2.1) by (7.5).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al Baba, H., Ghosh, A., Muha, B. et al. \(L^p\)-strong solution to fluid-rigid body interaction system with Navier slip boundary condition. J Elliptic Parabol Equ 7, 439–489 (2021). https://doi.org/10.1007/s41808-021-00134-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41808-021-00134-9

Keywords

Mathematics Subject Classification

Navigation