Skip to main content
Log in

Compressible fluid inside a linear oscillator

  • Published:
Journal of Elliptic and Parabolic Equations Aims and scope Submit manuscript

Abstract

We use Feireisl-Lions theory to deduce the existence of weak solutions to a system describing the dynamics of a linear oscillator containing a Newtonian compressible fluid. The appropriate Navier-Stokes equation is considered on a domain whose movement has one degree of freedom. The equation is paired with the Newton law and we assume a no-slip boundary condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Note that \(({{\,\mathrm{div}\,}}(\varrho \mathbf{u}\otimes \mathbf{v}))_j = \partial _i(\varrho \mathbf{v}_i \mathbf{u}_j)\) where the summation convention is used.

  2. Hereinafter we use an abbreviation \({\max \{8,\gamma \}} = \beta\).

  3. Hereinafter we use the following notation: \(\Vert \cdot \Vert _{L^q}\) is a norm in \(L^q(\Omega )\), \(\Vert \cdot \Vert _{W^{k,q}}\) is a norm in \(W^{k,q}(\Omega )\), \(\Vert \cdot \Vert _{L^qL^r}\) is norm in \(L^q((0,T),L^r(\Omega ))\) and \(\Vert \cdot \Vert _{L^qW^{k,r}}\) is a norm in \(L^q((0,T),W^{k,r}(\Omega ))\).

  4. Here \(\rightrightarrows\) denotes the uniform convergence.

References

  1. Bogovskiĭ,M.E.: Solutions of some problems of vector analysis, associated with the operators \({\rm div}\) and \({\rm grad}\). Theory of cubature formulas and the application of functional analysis to problems of mathematical physics. Trudy Sem. S. L. Soboleva, No. 1. Akad. Nauk SSSR Sibirsk. Otdel., Inst. Mat., Novosibirsk (1980)

  2. Disser, K., Galdi, G.P., Mazzone, G., Zunino, P.: Inertial motions of a rigid body with a cavity filled with a viscous liquid. Arch. Ration. Mech. Anal. 221(1), 487–526 (2016)

    Article  MathSciNet  Google Scholar 

  3. Feireisl, E.: Dynamics of Viscous Compressible Fluids. Oxford Lecture Series in Mathematics and its Applications, vol. 26. Oxford University Press, Oxford (2004)

    MATH  Google Scholar 

  4. Feireisl, E., Novotný, A.: Singular Limits in Thermodynamics of Viscous Fluids. Advances in Mathematical Fluid Mechanics. Birkhäuser Verlag, Basel (2009)

    Book  Google Scholar 

  5. Feireisl, E., Novotný, A., Petzeltová, H.: On the existence of globally defined weak solutions to the Navier-Stokes equations. J. Math. Fluid Mech. 3(4), 358–392 (2001)

    Article  MathSciNet  Google Scholar 

  6. Galdi, G.P., Mácha, V., Nečasová, Š., Bangwei, S.: Pendulum with a compressible fluid. Under construction

  7. Galdi, G.P., Mazzone, G.: On the Motion of a Pendulum with a Cavity Entirely Filled with a Viscous Iiquid. In Recent progress in the theory of the Euler and Navier-Stokes equations, volume 430 of London Math. Soc. Lecture Note Ser., pp. 37–56. Cambridge Univ. Press, Cambridge (2016)

    Google Scholar 

  8. Galdi, G.P., Mazzone, G., Mohebbi, M.: On the motion of a liquid-filled heavy body around a fixed point. Quart. Appl. Math. 76(1), 113–145 (2018)

    Article  MathSciNet  Google Scholar 

  9. Galdi, G.P., Macha, V., Necasova, S.: On weak solutions to the problem of a rigid body with a cavity filled with a compressible fluid, and their asymptotic behavior. Int. J. Non-linear Mech. 121, p.103431 (2020)

    Article  Google Scholar 

  10. Grafakos, L.: Classical Fourier Analysis, Volume 249 of Graduate Texts in Mathematics, vol. 249, 2nd edn. Springer, New York (2008)

    Google Scholar 

  11. Kapitanskiĭ, L.V., Piletskas, K.I.: Some problems of vector analysis. Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 138, 65–85 (1984). (Boundary value problems of mathematical physics and related problems in the theory of functions, 16)

    MathSciNet  Google Scholar 

  12. Novotný, A., Straškraba, I.: Introduction to the Mathematical Theory of Compressible Flow, Volume 27 of Oxford Lecture Series in Mathematics and its Applications. Oxford University Press, Oxford (2004)

    MATH  Google Scholar 

  13. Paolo Galdi, G., Mácha, V., Nečasová, Š: On the motion of a body with a cavity filled with compressible fluid. Arch. Ration. Mech. Anal. 232(3), 1649–1683 (2019)

    Article  MathSciNet  Google Scholar 

  14. Poincaré, H.: Sur l’equilibre d’une masse fluide animeé d’un mouvement de rotation. Acta Math. 7, 259–380 (1885)

    Article  MathSciNet  Google Scholar 

  15. Sobolev, V.V.: On a new problem of mathematical physics. Izv. Akad. Nauk SSSR. Ser. Mat. 18, 3–50 (1954)

    MathSciNet  MATH  Google Scholar 

  16. Stokes, G.G.: Mathematical and Physical Papers. In Cambridge Library Collection, vol. 1. Cambridge University Press, Cambridge (2009).. (reprint of the 1880 original)

    Book  Google Scholar 

  17. Tartar, L.: Compensated Compactness and Applications to Partial Differential Equations. In Nonlinear Analysis and Mechanics: Heriot-Watt Symposium, Vol. IV, Volume 39 of Res. Notes in Math., pp. 136–212. Pitman (1979)

    Google Scholar 

  18. Zhoukovski, N.Y.: On the motion of a rigid body having cavities filled with a homogeneous liquid drop. Russian J. Phys. Chem. Soc. 17, 31–152 (1885)

    Google Scholar 

Download references

Acknowledgements

This research was funded by Czech Science Foundation project number Grant GA19-04243S in the framework of RVO: 67985840.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Václav Mácha.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mácha, V. Compressible fluid inside a linear oscillator. J Elliptic Parabol Equ 7, 393–416 (2021). https://doi.org/10.1007/s41808-021-00120-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41808-021-00120-1

Keywords

Mathematics Subject Classification

Navigation