Skip to main content
Log in

Witnessing the lack of the Grothendieck property in C(K)-spaces via convergent sequences

  • Original Paper
  • Published:
Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas Aims and scope Submit manuscript

Abstract

Let K be a compact Hausdorff space and let C(K) be the space of all scalar-valued, continuous functions on K. We show that C(K) is an \(\ell _1(K)\)-Grothendieck space but not a Grothendieck space exactly when the spaces \(C_p(K)\) and \(C_p(K \oplus {\mathbb {N}}^{\#})\) are not linearly isomorphic, where \({\mathbb {N}}^{\#}\) is the one-point compactificiation of the discrete space of natural numbers. (That is, if C(K) contains a complemented copy of \(c_0\), then C(K) fails to be \(\ell _1(K)\)-Grothendieck if and only if the topologies of pointwise convergence in \(C_p(K)\) and \(C_p(K \oplus {\mathbb {N}}^{\#})\) are linearly isomorphic.) Moreover, for infinite compact spaces K and L, there exists a compact space G that has a non-trivial convergent sequence and such that \(C_{p}(K\times L)\) and \(C_{p}(G)\) are linearly isomorphic. This extends a remarkable theorem of Cembranos and Freniche. Some examples illustrating the above results are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. V. Arhangel’skii, General Topology III, Encyclopedia of Math. Sciences, 51, Springer, Berlin (1995)

  2. Arkhangell’ski, A.V.: A survey of \(C_p\)-theory. Quest. Answ. Gen. Topol. 5, 1–109 (1987)

    Google Scholar 

  3. Banakh, T., Ka̧kol, J., Śliwa, W.: Metrizable quotients of \(C_p\)-spaces. Topol. Appl. 249, 95–102 (2018)

    MATH  Google Scholar 

  4. Banakh, T., Ka̧kol, J., Śliwa, W.: Josefson–Nissenzweig property for \(C_{p}\)-spaces. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 113, 3015–3030 (2019)

    MathSciNet  MATH  Google Scholar 

  5. Bielas, W.: On convergence of sequences of Radon measures Praca semestralna nr 2 (semestr zimowy 2010/11), http://ssdnm.mimuw.edu.pl/pliki/prace-studentow/st/pliki/wojciech-bielas-2.pdf

  6. Cembranos, P.: \(C\left( K, E\right) \) contains a complemented copy of \(c_{0}\). Proc. Am. Math. Soc. 91, 556–558 (1984)

    MATH  Google Scholar 

  7. Cembranos, P., Mendoza, J.: Banach Spaces of Vector-Valued Functions, LNM 1676. Springer, Berlin (1997)

    MATH  Google Scholar 

  8. Dales, H.D., Dashiell Jr., F.H., Lau, A.T.M., Strauss, D.: Banach Spaces of Continuous Functions as Dual Spaces. Springer, Berlin (2016)

    MATH  Google Scholar 

  9. Ferrando, J.C., Ka̧kol, J., López-Pellicer, M., Śliwa, W.: On the separable quotient problem for Banach spaces. Funct. Approx Comment. Math. 59, 153–173 (2018)

    MathSciNet  MATH  Google Scholar 

  10. Ferrando, J. C., López-Alfonso, S., López-Pellicer, M.: On Grothendieck Sets, Axioms 9 (2010), Article 34

  11. Ferrando, J.C., López-Alfonso, S., López-Pellicer, M.: On Nykodým and Rainwater sets for ba\(({{\cal{R}}})\) and a problem of M. Valdivia. Filomat 33, 2409–2416 (2019)

    MathSciNet  Google Scholar 

  12. Freniche, F.J.: The Vitali-Hahn-Saks theorem for boolean algebras with the subsequential interpolation property. Proc. Am. Math. Soc. 92, 362–366 (1984)

    MathSciNet  MATH  Google Scholar 

  13. Gillman, L., Jerison, M.: Rings of Continuous Functions. Van Nostrand Reinhold Company, New York (1960)

    MATH  Google Scholar 

  14. Haydon, R.: A non-reflexive Grothendieck space that does not containl \(\ell _{\infty }\). Israel J. Math. 40, 65–73 (1981)

    MathSciNet  MATH  Google Scholar 

  15. Haydon, R., Levy, M., Odell, E.: The sequences without weak\(^{*}\) convergent convex block subsequences. Proc. Am. Math. Soc. 100, 94–98 (1987)

    MathSciNet  MATH  Google Scholar 

  16. Kania, T.: On \(C^{*}\)-algebras which cannot be decomposed into tensor products with both factors infinite-dimensional. Q. J. Math. 66, 1063–1068 (2015)

    MathSciNet  MATH  Google Scholar 

  17. Ka̧kol, J., Sobota, D., Zdomskyy, L.: The Josefson-Nissenzweig theorem, Grothendieck spaces, and finitely-supported measures on compact spaces, preprint

  18. Plebanek, G.: On Grothendieck spaces, unpublished note (2005)

  19. Schachermayer, W.: On some classical measure-theoretic theorems for non--complete Boolean algebras. Dissertationes Math. (Rozprawy Mat.) 214, (1982)

  20. Walker, R.C.: The Stone-Čech Compactification. Springer-Verlag, Berlin (1974)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aníbal Moltó.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The research for the first named author is supported by the GAČR project 20-22230L and RVO: 67985840. The second author has been supported by a grant of the Ministerio de Ciencia, Innovación y Universidades, PGC2018-094431-B-100. The authors thank to J. C. Ferrando and T. Kania for their suggestions, and also to the referees for their valuable comments and remarks.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ka̧kol, J., Moltó, A. Witnessing the lack of the Grothendieck property in C(K)-spaces via convergent sequences. RACSAM 114, 179 (2020). https://doi.org/10.1007/s13398-020-00914-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13398-020-00914-3

Keywords

Mathematics Subject Classification

Navigation