Skip to main content
Log in

On the Isoperimetric Inequality for the Magnetic Robin Laplacian with Negative Boundary Parameter

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

A Correction to this article was published on 12 July 2022

This article has been updated

Abstract

We consider the magnetic Robin Laplacian with a negative boundary parameter on a bounded, planar \(C^2\)-smooth domain. The respective magnetic field is homogeneous. Among a certain class of domains, we prove that the disk maximises the ground-state energy under the fixed perimeter constraint provided that the magnetic field is of moderate strength. This class of domains includes, in particular, all domains that are contained upon translations in the disk of the same perimeter and all convex centrally symmetric domains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

Notes

  1. The case \(R\not =1\) can be deduced from the case \(R=1\) by a dilation, which yields \(\lambda _1^{\beta ,b}({\mathcal B})=R^{-2}\lambda _1^{\beta R,bR^2}({\mathcal B}_1)\), where \({\mathcal B}_1\) denotes the unit disk.

References

  1. Ananieva, A., Budyika, V.: To the spectral theory of the Bessel operator on a finite interval and the half-line. J. Math. Sci. 211, 624–645 (2015)

    Article  MathSciNet  Google Scholar 

  2. Antunes, P., Freitas, P., Krejčiřík, D.: Bounds and extremal domains for Robin eigenvalues with negative boundary parameter. Adv. Calc. Var. 10, 357–379 (2017)

    Article  MathSciNet  Google Scholar 

  3. Baernstein, I.A.: Symmetrization in Analysis. Cambridge University Press, Cambridge (2019)

    Book  Google Scholar 

  4. Bauman, P., Phillips, D., Tang, Q.: Stable nucleation for the Ginzburg-Landau system with an applied magnetic field. Arch. Rational Mech. Anal. 142, 1–43 (1998)

    Article  MathSciNet  Google Scholar 

  5. Behrndt, J., Exner, P., Lotoreichik, V.: Schrödinger operators with \(\delta \)- and \(\delta ^{\prime }\)-interactions on Lipschitz surfaces and chromatic numbers of associated partitions. Rev. Math. Phys. 26, 1450015 (2014)

    Article  MathSciNet  Google Scholar 

  6. Birman, M.S., Solomjak, M.Z.: Spectral Theory of Self-adjoint Operators in Hilbert Space. Kluwer, Dordrecht (1987)

    Book  Google Scholar 

  7. Bossel, M.-H.: Membranes élastiquement liées: Extension du théoréme de Rayleigh-Faber-Krahn et de l’inégalité de Cheeger. C. R. Acad. Sci. Paris Sér. I Math. I(302), 47–50 (1986)

    MathSciNet  MATH  Google Scholar 

  8. Bucur, D., Ferone, V., Nitsch, C., Trombetti, C.: A sharp estimate for the first Robin–Laplacian eigenvalue with negative boundary parameter. Atti della Accademia Nazionale dei Lincei, Classe di Scienze Fisiche, Matematiche e Naturali, IX Series. Rend. Lincei, Mat. Appl. 30, 665–676 (2019)

  9. Bulla, W., Gesztesy, F.: Deficiency indices and singular boundary conditions in quantum mechanics. J. Math. Phys. 26, 2520–2528 (1985)

    Article  MathSciNet  Google Scholar 

  10. Daners, D.: A Faber-Krahn inequality for Robin problems in any space dimension. Math. Ann. 335, 767–785 (2006)

    Article  MathSciNet  Google Scholar 

  11. Delfour, M., Zolésio, J.-P.: Shape analysis via oriented distance functions. J. Funct. Anal. 123, 129–201 (1994)

    Article  MathSciNet  Google Scholar 

  12. Erdős, L.: Rayleigh-type isoperimetric inequality with a homogeneous magnetic field. Calc. Var. PDE 4, 283–292 (1996)

    Article  MathSciNet  Google Scholar 

  13. Exner, P., Minakov, A., Parnovski, L.: Asymptotic eigenvalue estimates for a Robin problem with a large parameter. Port. Math. 71, 141–156 (2014)

    Article  MathSciNet  Google Scholar 

  14. Faber,G.: Beweis dass unter allen homogenen Membranen von gleicher Fläche und gleicher Spannung die kreisfor̈mige den tiefsten Grundton gibt, Sitz. bayer. Akad. Wiss., pp. 169–172 (1923)

  15. Fournais, S., Helffer, B.: Inequalities for the lowest magnetic Neumann eigenvalue. Lett. Math. Phys. 109, 1683–1700 (2019)

    Article  MathSciNet  Google Scholar 

  16. Fournais, S., Helffer, B.: Spectral Methods in Surface Superconductivity. Birkhäuser, Basel (2010)

    Book  Google Scholar 

  17. Fournais, S., Sundqvist, M.P.: Lack of diamagnetism and the Little-Parks effect. Commun. Math. Phys. 337, 191–224 (2015)

    Article  MathSciNet  Google Scholar 

  18. Freitas, P., Krejčiřík, D.: The first Robin eigenvalue with negative boundary parameter. Adv. Math. 280, 322–339 (2015)

    Article  MathSciNet  Google Scholar 

  19. Freitas, P., Laugesen, R.: From Neumann to Steklov and beyond, via Robin: the Weinberger way. Am. J. Math. 143(3), 969–994 (2021)

    Article  MathSciNet  Google Scholar 

  20. Freitas, P., Laugesen, R.S.: From Steklov to Neumann and beyond, via Robin: the Szegő way. Can. J. Math. 72, 1024–1043 (2020)

    Article  Google Scholar 

  21. Gesztesy,F., Pang, M., Stanfill,J.: On domain properties of Bessel-type operators. arXiv:2107.09271

  22. Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of the Second Order, 2nd edn. Springer, New York (1983)

    MATH  Google Scholar 

  23. Girouard, A., Laugesen, R.S.: Robin spectrum: two disks maximize the third eigenvalue. Indiana Univ. Math. J. 70(6), 2711–2742 (2021)

    Article  MathSciNet  Google Scholar 

  24. Hartman, P.: Geodesic parallel coordinates in the large. Am. J. Math. 86, 705–727 (1964)

    Article  MathSciNet  Google Scholar 

  25. Helffer, B., Kachmar, A.: Eigenvalues for the Robin Laplacian in domains with variable curvature. Trans. Am. Math. Soc. 369, 3253–3287 (2017)

    Article  MathSciNet  Google Scholar 

  26. Hurwitz, A.: Sur quelques applications géométriques des séries de Fourier. Ann. de l’Éc. Norm. (3) 19, 357–408 (1902)

    MATH  Google Scholar 

  27. Kachmar,A., Sundqvist,M. P.: Counterexample to strong diamagnetism for the magnetic Robin Laplacian. Math. Phys. Anal. Geom. 23, Paper No. 27, 15 p (2020)

  28. Kato, T.: Perturbation Theory for Linear Operators, Classics in Mathematics. Springer, Berlin (1995)

    Book  Google Scholar 

  29. Khalile,M., Lotoreichik,V.: Spectral isoperimetric inequalities for Robin Laplacians on 2-manifolds and unbounded cones. J. Spectral Theory. arXiv:1909.10842

  30. Kirsten, K., Loya, P.: Spectral functions for the Schrödinger operator on \({{\mathbb{R}}}^+\) with a singular potential. J. Math. Phys. 51, 053512 (2010)

    Article  MathSciNet  Google Scholar 

  31. Kovařík, H., Pankrashkin, K.: On the p-Laplacian with Robin boundary conditions and boundary trace theorems. Calc. Var. PDE 56, 49 (2017)

    Article  MathSciNet  Google Scholar 

  32. Krahn, E.: Uber eine von Rayleigh formulierte Minimaleigenschaft des Kreises. Math. Ann. 94, 97–100 (1924)

    Article  MathSciNet  Google Scholar 

  33. Krejčiřík, D., Lotoreichik, V.: Optimisation of the lowest Robin eigenvalue in the exterior of a compact set. J. Convex Anal. 25, 319–337 (2018)

    MathSciNet  MATH  Google Scholar 

  34. Krejčiřík, D., Lotoreichik, V.: Optimisation of the lowest Robin eigenvalue in the exterior of a compact set, II: non-convex domains and higher dimensions. Potential Anal. 52, 601–614 (2020)

    Article  MathSciNet  Google Scholar 

  35. Laugesen, R.S., Siudeja, B.A.: Magnetic spectral bounds on starlike plane domains, ESAIM. Control Optim. Calc. Var. 21, 670–689 (2015)

    Article  MathSciNet  Google Scholar 

  36. Levitin, M., Parnovski, L.: On the principal eigenvalue of a Robin problem with a large parameter. Math. Nachr. 281, 272–281 (2008)

    Article  MathSciNet  Google Scholar 

  37. Lieb, E., Loss, M.: Analysis. American Mathematical Society, Providence, RI (2001)

    MATH  Google Scholar 

  38. Malý, J., Swanson, D., Ziemer, W.: The co-area formula for Sobolev mappings. Trans. Am. Math. Soc. 355, 477–492 (2002)

    Article  MathSciNet  Google Scholar 

  39. McLean, W.: Strongly Elliptic Systems and Boundary Integral Equations. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  40. Pankrashkin, K.: On the asymptotics of the principal eigenvalue for a Robin problem with a large parameter in planar domains. Nanosyst. Phys. Chem. Math. 4, 474–483 (2013)

    MATH  Google Scholar 

  41. Pankrashkin, K.: An inequality for the maximum curvature through a geometric flow. Arch. Math. 105, 297–300 (2015)

    Article  MathSciNet  Google Scholar 

  42. Pankrashkin, K., Popoff, N.: An effective Hamiltonian for the eigenvalue asymptotics of the Robin Laplacian with a large parameter. J. Math. Pures Appl. 106, 615–650 (2016)

    Article  MathSciNet  Google Scholar 

  43. Rayleigh, J. W.S.: The Theory of Sound. Macmillan, London, 1st edition (reprinted: Dover, New York (1945)) (1877)

  44. Savo, A.: Lower bounds for the nodal length of eigenfunctions of the Laplacian. Ann. Glob. Anal. Geom. 16, 133–151 (2001)

    Article  MathSciNet  Google Scholar 

  45. Schmüdgen, K.: Unbounded Self-adjoint Operators on Hilbert Space. Springer, Dordrecht (2012)

    Book  Google Scholar 

  46. Son, S.: Spectral Problems on Triangles and Disks: Extremizers and Ground States. PhD Thesis, University of Illinois at Urbana-Champaign (2014)

  47. Weidmann, J.: Lineare Operatoren in Hilberträumen. Grundlagen, Teubner, Stuttgart, Teil I (2000)

Download references

Acknowledgements

AK is partially supported by the Center for Advanced Mathematical Sciences (CAMS, American University of Beirut). VL acknowledges the support by the grant No. 21-07129S of the Czech Science Foundation (GAČR) and thanks Magda Khalile for useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir Lotoreichik.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: “Centrally symmetric domains” were replaced by “Convex centrally symmetric domains” in the Abstract and the Introduction. Edits made to the Remark 3.4 and Remark 4.7.

Appendices

Appendix A: Closedness and Semi-boundedness of the Quadratic Form \(\mathfrak q_\Omega ^{\beta ,b}\)

In this appendix, we show that the quadratic form \(\mathfrak q_\Omega ^{\beta ,b}\) in (2.2) satisfies all the assumptions of the first representation theorem.

Lemma A.1

The symmetric densely defined quadratic form \(\mathfrak q_\Omega ^{\beta ,b}\) in (2.2) is closed and semi-bounded.

Proof

Using that \(\mathbf {A}\in L^\infty (\Omega ;{\mathbb R}^2)\) we find that for all \(u\in H^1(\Omega )\) one has

$$\begin{aligned} \begin{aligned} \Vert (\nabla -{\mathsf {i}}b\mathbf {A})u\Vert _{L^2(\Omega ;{\mathbb C}^2)}^2&\le 2\Vert \nabla u \Vert ^2_{L^2(\Omega ;{\mathbb C}^2)} + 2b^2\Vert \mathbf {A}\Vert _{\infty }^2\Vert u\Vert ^2_{L^2(\Omega )},\\ \Vert (\nabla -{\mathsf {i}}b\mathbf {A})u\Vert _{L^2(\Omega ;{\mathbb C}^2)}^2&\ge \frac{1}{2}\Vert \nabla u \Vert ^2_{L^2(\Omega ;{\mathbb C}^2)} - b^2\Vert \mathbf {A}\Vert _{\infty }^2\Vert u\Vert ^2_{L^2(\Omega )}. \end{aligned} \end{aligned}$$
(A.1)

From the inequalities in (A.1), we conclude that the non-negative symmetric densely defined quadratic form \(\mathfrak q_\Omega ^{0,b}\) corresponding to the magnetic Neumann Laplacian on \(\Omega \) with the homogeneous magnetic field is closed, because the norm induced by the quadratic form \(\mathfrak q_\Omega ^{0,b}\) is equivalent to the standard norm in the Sobolev space \(H^1(\Omega )\).

Recall that according to the diamagnetic inequality [37, Thm. 7.21]

$$\begin{aligned} \Vert \nabla |u|\Vert _{L^2(\Omega ;{\mathbb C}^2)}^2\le \Vert (\nabla -{\mathsf {i}}b\mathbf {A})u\Vert _{L^2(\Omega ;{\mathbb C}^2)}^2 \end{aligned}$$
(A.2)

for all \(u\in H^1(\Omega )\). Combining (A.2) with the inequality in [5,  Lem. 2.6], we obtain that for any \(\varepsilon >0\) there exists a constant \(C(\varepsilon ) > 0\) such that

$$\begin{aligned} \Vert u|_{\partial \Omega }\Vert ^2_{L^2(\partial \Omega )} \le \varepsilon \Vert (\nabla -{\mathsf {i}}b\mathbf {A})u\Vert ^2_{L^2(\Omega ;{\mathbb C}^2)} + C(\varepsilon )\Vert u\Vert ^2_{L^2(\Omega )},\quad \text {for all}\, u\in H^1(\Omega ).\nonumber \\ \end{aligned}$$
(A.3)

From the above inequality, we deduce that the quadratic form \(H^1(\Omega )\ni u\mapsto \beta \Vert u|_{\partial \Omega }\Vert ^2_{L^2(\partial \Omega )}\), \(\beta \in {\mathbb R}_-\), is form bounded with respect to the quadratic form \(\mathfrak q^{0,b}_\Omega \) with the form bound \(< 1\). Hence, by [32, Thm. VI.1.33] the quadratic form \(\mathfrak q^{\beta ,b}_\Omega \) is closed and semi-bounded. \(\square \)

Appendix B: Continuity of the Ground-State Energy

In this appendix, we present a standard proof that the ground-state energy of the magnetic Robin Laplacian \({\mathsf H}_{\Omega }^{\beta ,b}\) depends continuously on the intensity of the magnetic field b and the Robin parameter \(\beta \).

Recall that \(\Omega \subset {\mathbb R}^2\) is a bounded simply connected \(C^2\)-smooth domain. For definiteness we use the convention \(\Vert u\Vert ^2_{H^1(\Omega )} := \Vert \nabla u\Vert ^2_{L^2(\Omega ;{\mathbb C}^2)} + \Vert u\Vert ^2_{L^2(\Omega )}\) for the standard norm in the Sobolev space \(H^1(\Omega )\). Recall also that by the trace theorem [39, Thm. 3.38] there exists a constant \(c >0\) such that \(\Vert u|_{\partial \Omega }\Vert ^2\le c\Vert u\Vert ^2_{H^1(\Omega )}\) for any \(u\in H^1(\Omega )\).

Let \(\beta _1\le 0\) and \(b_1\ge 0\) be fixed and \(\beta _2\le 0\) and \(b_2\ge 0\) be such that \(|\beta _1-\beta _2|,|b_1-b_2|\le 1\). It follows from the second inequality in (A.1) combined with [5, Lem. 2.6] that there exists \(\gamma \in {\mathbb R}\) such that \({\mathsf H}^{\beta _2,b_2}_\Omega \ge \gamma \) for any \(\beta _2\le 0\) and \(b_2\ge 0\) satisfying \(|\beta _1-\beta _2|,|b_1-b_2|\le 1\)

For any \(u \in H^1(\Omega )\), we get the following estimate

$$\begin{aligned} \begin{aligned}&\big |\mathfrak q^{\beta _1,b_1}_\Omega [u] - \mathfrak q^{\beta _2,b_2}_\Omega [u]\big |\\&\quad \!=\!\bigg | 2(b_1-b_2)\mathrm{Im}\,(\nabla u,\mathbf{A} u)_{L^2(\Omega ;{\mathbb C}^2)} + (b_1^2-b_2^2)(|\mathbf{A}|^2 u,u)_{L^2(\Omega )} + (\beta _1-\beta _2)\Vert u|_{\partial \Omega }\Vert ^2_{L^2(\partial \Omega )} \bigg |\\&\quad \!\le \! 2|b_1-b_2|\Vert \nabla u\Vert _{L^2(\Omega ;{\mathbb C}^2)} \Vert \mathbf{A} u\Vert _{L^2(\Omega ;{\mathbb C}^2)} \!+\! |b_1^2-b_2^2|\Vert \mathbf{A}\Vert _\infty ^2\Vert u\Vert ^2_{L^2(\Omega )}\!+\! |\beta _1-\beta _2|\Vert u|_{\partial \Omega }\Vert ^2_{L^2(\partial \Omega )}\\&\quad \!\le \! |b_1\!-\!b_2|\big [\Vert \nabla u\Vert _{L^2(\Omega ;{\mathbb C}^2)}^2 \!+\!\Vert \mathbf{A}\Vert ^2_\infty \Vert u\Vert ^2_{L^2(\Omega )}\big ] \!+\!|b_1^2\!-\!b_2^2|\Vert \mathbf{A}\Vert _\infty ^2\Vert u\Vert ^2_{L^2(\Omega )}\! +\! c|\beta _1\!-\!\beta _2|\Vert u\Vert ^2_{H^1(\Omega )}\\&\quad \!\le \! \max \{|b_1-b_2|,|b_1-b_2| \Vert \mathbf{A}\Vert _\infty ^2, |b_1^2-b_2^2|\Vert \mathbf{A}\Vert _\infty ^2,c|\beta _1-\beta _2|\}\Vert u\Vert ^2_{H^1(\Omega )}, \end{aligned} \end{aligned}$$

where we used the trace theorem in the penultimate step. Since the standard \(H^1\)-norm is equivalent to the norm \(u \mapsto \mathfrak q_{\Omega }^{\beta _1,b_1}[u] +(-\gamma +1)\Vert u\Vert ^2_{L^2(\Omega )}\) induced by the quadratic form \(\mathfrak q_\Omega ^{\beta _1,b_1}\) we conclude from the above estimate with the aid of [28, Thm. VI.3.6] that the operator \({\mathsf H}^{\beta _2,b_2}_\Omega \) converges in the norm resolvent sense to the operator \({\mathsf H}^{\beta _1,b_1}_\Omega \) as \((\beta _2,b_2)\rightarrow (\beta _1,b_1)\). Note also that the family of operators \({\mathsf H}^{\beta _2,b_2}_\Omega \) is uniformly lower semi-bounded. Hence, it follows from the spectral convergence result [47, Satz 9.24 (ii)] that \(\lambda ^{\beta _2,b_2}_1(\Omega )\rightarrow \lambda ^{\beta _1,b_1}_1(\Omega )\) as \((\beta _2,b_2)\rightarrow (\beta _1,b_1)\) and thus the lowest eigenvalue \(\lambda _1^{\beta ,b}(\Omega )\) of \({\mathsf H}^{\beta ,b}_\Omega \) is a continuous function of the parameters \(\beta ,b\in (-\infty ,0]\times [0,\infty )\).

Appendix C: The Neumann Magnetic Ground-State Energy

Consider the Neumann eigenvalue \(\lambda _1^{0,b}(\Omega )\) introduced in (2.5) with an associated normalised eigenfunction \(u_b:\Omega \rightarrow {\mathbb C}\). Let us assume that \(\lambda _1^{0,b}(\Omega )=0\). The diamagnetic inequality,

$$\begin{aligned} \int _\Omega \big |\nabla |u_b|\big |^2{\mathsf {d}}x\le \int _\Omega |(\nabla -{\mathsf {i}}b\mathbf {A})u_b|^2 {\mathsf {d}}x=0,\end{aligned}$$

yields that \(|u_b|= |\Omega |^{-1/2}\), since the domain \(\Omega \) is connected. Furthermore, \(u_b\) satisfies

$$\begin{aligned} (\nabla -{\mathsf {i}}b \mathbf {A})u_b=0\,. \end{aligned}$$
(C.1)

Taking the inner product with \(\overline{u}_b\), we infer from (C.1),

$$\begin{aligned} \overline{u}_b\nabla u_b=\frac{{\mathsf {i}}b}{|\Omega |}\mathbf {A}\,.\end{aligned}$$

Taking the \(\mathrm{curl}\) in (C.1), we get,

$$\begin{aligned} {\mathsf {i}}b\,\mathrm{curl}(\mathbf {A}u_b)=\mathrm{curl}(\nabla u_b)=0 \,.\end{aligned}$$
(C.2)

Finally, we notice that (see (2.3))

$$\begin{aligned}\overline{u}_b\,\mathrm{curl}(\mathbf {A}u_b)=|u_b|^2\,\mathrm{curl}\mathbf {A}+\mathbf {A}^\bot \cdot (\overline{u}_b\nabla u_b)=\frac{1}{|\Omega |}+\frac{{\mathsf {i}}b}{|\Omega |}\mathbf {A}^\bot \cdot \mathbf {A}=\frac{1}{|\Omega |}\end{aligned}$$

where \(\mathbf {A}^\bot =\frac{1}{2}(x_1,x_2)\). Consequently, we get from (C.2) that \(b=0\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kachmar, A., Lotoreichik, V. On the Isoperimetric Inequality for the Magnetic Robin Laplacian with Negative Boundary Parameter. J Geom Anal 32, 182 (2022). https://doi.org/10.1007/s12220-022-00917-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12220-022-00917-z

Keywords

Mathematics Subject Classification

Navigation