Skip to main content
Log in

Maximal Non-compactness of Sobolev Embeddings

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

It has been known that sharp Sobolev embeddings into weak Lebesgue spaces are non-compact but the question of whether the measure of non-compactness of such an embedding equals to its operator norm constituted a well-known open problem. The existing theory suggested an argument that would possibly solve the problem should the target norms be disjointly superadditive, but the question of disjoint superadditivity of spaces \(L^{p,\infty }\) has been open, too. In this paper, we solve both these problems. We first show that weak Lebesgue spaces are never disjointly superadditive, so the suggested technique is ruled out. But then we show that, perhaps somewhat surprisingly, the measure of non-compactness of a sharp Sobolev embedding coincides with the embedding norm nevertheless, at least as long as \(p<\infty \). Finally, we show that if the target space is \(L^{\infty }\) (which formally is also a weak Lebesgue space with \(p=\infty \)), then the things are essentially different. To give a comprehensive answer including this case, too, we develop a new method based on a rather unexpected combinatorial argument and prove thereby a general principle, whose special case implies that the measure of non-compactness, in this case, is strictly less than its norm. We develop a technique that enables us to evaluate this measure of non-compactness exactly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Adams, R.A.: Sobolev spaces. Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], New York-London, 1975. Pure and Applied Mathematics, Vol. 65

  2. Adams, R.A., Fournier, J.J.F.: Sobolev Spaces. Pure and Applied Mathematics (Amsterdam), vol. 140, 2nd edn. Elsevier, Amsterdam (2003)

  3. Banaś, J., Goebel, K.: Measures of noncompactness in Banach spaces. Lecture Notes in Pure and Applied Mathematics, vol. 60. Marcel Dekker Inc., New York (1980)

    MATH  Google Scholar 

  4. Bennett, C., Sharpley, R.: Interpolation of Operators. Pure and Applied Mathematics, vol. 129. Academic Press Inc., Boston (1988)

    MATH  Google Scholar 

  5. Bouchala, O.: Measures of non-compactness and Sobolev-Lorentz spaces. Z. Anal. Anwend. 39(1), 27–40 (2020). https://doi.org/10.4171/zaa/1649

    Article  MathSciNet  MATH  Google Scholar 

  6. Carl, B.: Entropy numbers, \(s\)-numbers, and eigenvalue problems. J. Funct. Anal. 41(3), 290–306 (1981). https://doi.org/10.1016/0022-1236(81)90076-8

    Article  MathSciNet  MATH  Google Scholar 

  7. Carl, B., Triebel, H.: Inequalities between eigenvalues, entropy numbers, and related quantities of compact operators in Banach spaces. Math. Ann. 251(2), 129–133 (1980). https://doi.org/10.1007/BF01536180

    Article  MathSciNet  MATH  Google Scholar 

  8. Cassani, D., Ruf, B., Tarsi, C.: Optimal Sobolev type inequalities in Lorentz spaces. Potential Anal. 39(3), 265–285 (2013). https://doi.org/10.1007/s11118-012-9329-2

    Article  MathSciNet  MATH  Google Scholar 

  9. Cavaliere, P., Mihula, Z.: Compactness for Sobolev-type trace operators. Nonlinear Anal. 183, 42–69 (2019). https://doi.org/10.1016/j.na.2019.01.013

    Article  MathSciNet  MATH  Google Scholar 

  10. Cianchi, A., Pick, L.: Sobolev embeddings into BMO, VMO, and \(L_\infty \). Ark. Mat. 36(2), 317–340 (1998). https://doi.org/10.1007/BF02384772

    Article  MathSciNet  MATH  Google Scholar 

  11. Darbo, G.: Punti uniti in trasformazioni a codominio non compatto. Rend. Sem. Mat. Univ. Padova 24, 84–92 (1955)

    MathSciNet  MATH  Google Scholar 

  12. Edmunds, D.E., Evans, W.D.: Spectral Theory and Differential Operators. Oxford Mathematical Monographs. Oxford University Press, Oxford (2018). https://doi.org/10.1093/oso/9780198812050.001.0001

    Book  Google Scholar 

  13. Edmunds, D.E., Triebel, H.: Function Spaces, Entropy Numbers, Differential Operators. Cambridge Tracts in Mathematics, vol. 120. Cambridge University Press, Cambridge (1996). https://doi.org/10.1017/CBO9780511662201

    Book  MATH  Google Scholar 

  14. Edmunds, D.E., Kerman, R., Pick, L.: Optimal Sobolev imbeddings involving rearrangement-invariant quasinorms. J. Funct. Anal. 170(2), 307–355 (2000). https://doi.org/10.1006/jfan.1999.3508

    Article  MathSciNet  MATH  Google Scholar 

  15. Evans, W.D., Harris, D.J.: Sobolev embeddings for generalized ridged domains. Proc. Lond. Math. Soc. (3) 54(1), 141–175 (1987). https://doi.org/10.1112/plms/s3-54.1.141

    Article  MathSciNet  MATH  Google Scholar 

  16. Hencl, S.: Measures of non-compactness of classical embeddings of Sobolev spaces. Math. Nachr. 258, 28–43 (2003). https://doi.org/10.1002/mana.200310085

    Article  MathSciNet  MATH  Google Scholar 

  17. Jannelli, E., Solimini, S.: Concentration estimates for critical problems. Ricerche Mat., 48(suppl.):233–257 (1999). Papers in memory of Ennio De Giorgi (Italian)

  18. Kerman, R., Pick, L.: Optimal Sobolev imbeddings. Forum Math. 18(4), 535–570 (2006). https://doi.org/10.1515/FORUM.2006.028

    Article  MathSciNet  MATH  Google Scholar 

  19. Kerman, R., Pick, L.: Compactness of Sobolev imbeddings involving rearrangement-invariant norms. Studia Math. 186(2), 127–160 (2008). https://doi.org/10.4064/sm186-2-2

    Article  MathSciNet  MATH  Google Scholar 

  20. Kuratowski, C.: Sur les espaces complets. Fund. Math. 15, 301–309 (1930). https://doi.org/10.4064/fm-15-1-301-309

    Article  MATH  Google Scholar 

  21. Lions, P.-L.: The concentration-compactness principle in the calculus of variations. The locally compact case. I. Ann. Inst. H. Poincaré Anal. Non Linéaire 1(2), 109–145 (1984)

    Article  MathSciNet  Google Scholar 

  22. Lions, P.-L.: The concentration-compactness principle in the calculus of variations. The locally compact case. II. Ann. Inst. H. Poincaré Anal. Non Linéaire 1(4), 223–283 (1984)

    Article  MathSciNet  Google Scholar 

  23. Lions, P.-L.: The concentration-compactness principle in the calculus of variations. The limit case. I. Rev. Mat. Iberoamericana 1(1), 145–201 (1985). https://doi.org/10.4171/RMI/6

    Article  MathSciNet  MATH  Google Scholar 

  24. Lions, P.-L.: The concentration-compactness principle in the calculus of variations. The limit case. II. Rev. Mat. Iberoamericana 1(2), 45–121 (1985). https://doi.org/10.4171/RMI/12

    Article  MathSciNet  MATH  Google Scholar 

  25. Maz’ja, V.G.: Sobolev spaces. Springer Series in Soviet Mathematics. Springer, Berlin (1985). https://doi.org/10.1007/978-3-662-09922-3. Translated from the Russian by T. O. Shaposhnikova

    Book  Google Scholar 

  26. Pick, L., Kufner, A., John, O., Fučík, S.: Function spaces. Vol. 1, vol. 14 of De Gruyter Series in Nonlinear Analysis and Applications. Walter de Gruyter & Co., Berlin, extended ed. (2013)

  27. Pietsch, A.: History of Banach Spaces and Linear Operators. Birkhäuser Boston Inc., Boston (2007)

    MATH  Google Scholar 

  28. Sadovskiĭ, B.N.: Measures of noncompactness and condensing operators. Problemy Mat. Anal. Slož. Sistem 2, 89–119 (1968)

    MathSciNet  Google Scholar 

  29. Slavíková, L.: Compactness of higher-order Sobolev embeddings. Publ. Mat. 59(2), 373–448 (2015)

    Article  MathSciNet  Google Scholar 

  30. Solimini, S.: A note on compactness-type properties with respect to Lorentz norms of bounded subsets of a Sobolev space. Ann. Inst. H. Poincaré. Anal. Non Linéaire 12(3), 319–337 (1995). https://doi.org/10.1016/S0294-1449(16)30159-7

    Article  MathSciNet  MATH  Google Scholar 

  31. Stein, E.M.: Editor’s note: the differentiability of functions in \({ R}^{n}\). Ann. Math. (2) 113(2), 383–385 (1981)

    MathSciNet  MATH  Google Scholar 

  32. Struwe, M.: A global compactness result for elliptic boundary value problems involving limiting nonlinearities. Math. Z. 187(4), 511–517 (1984). https://doi.org/10.1007/BF01174186

    Article  MathSciNet  MATH  Google Scholar 

  33. Tribel, H.: Interpolation Theory, Function Spaces, Differential Operators. North-Holland Mathematical Library, vol. 18. North-Holland Publishing Co., Amsterdam (1978)

    Google Scholar 

Download references

Acknowledgements

We would like to thank David E. Edmunds and Jan Malý for stimulating discussions and useful ideas. We are grateful to the referee for their careful reading of the manuscript and their valuable comments.

Funding

This research was partly funded by Czech Science Foundation Grant P201-18-00580S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luboš Pick.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lang, J., Musil, V., Olšák, M. et al. Maximal Non-compactness of Sobolev Embeddings. J Geom Anal 31, 9406–9431 (2021). https://doi.org/10.1007/s12220-020-00522-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12220-020-00522-y

Keywords

Mathematics Subject Classification

Navigation