Skip to main content

Advertisement

Log in

Complex relationships between lettuce (Lactuca sativa), arbuscular mycorrhizal fungi, and a leafminer pest in a context of ecological soil management

  • Original Paper
  • Published:
Arthropod-Plant Interactions Aims and scope Submit manuscript

Abstract

Conventional agriculture has negative impacts on the ecosystems while ecological intensification can ameliorate these effects by enhancing ecological processes. Arbuscular mycorrhizal fungi (AMF) are plant root symbionts that improve access to soil nutrients affecting plant growth and biotic interactions. Agricultural managements differentially affect AMF communities, but how these changes feedback on aboveground plant interactions remains poorly studied. Lettuce (Lactuca sativa) is a common crop severely attacked by Liriomyza huidobrensis (Diptera: Agromizydae), a polyphagous leafminer that has developed resistance to various pesticides, for which managing plant defenses and tolerance represents a feasible option to regulate populations. The aim of this study was to investigate if AMF communities from ecological and conventional management produce differential effects on mycorrhizal interaction, tissue phosphorus content and growth of lettuce plants and on L. huidobrensis oviposition preference. In greenhouse, we compared the effects of soils from farms with conventional and ecological managements from central Argentina on lettuce plants, and exposed them to L. huidobrensis mated females. Mycorrhizal colonization was higher with AMF from ecological than conventional treatments, although plant biomass was lower in treatments with AMF than with sterile soils (Strl), or with soil microorganisms without AMF (MO), in both managements. Phosphorus content was significantly higher in plants with MO and AMF in comparison to Strl, with no difference between managements. Plants grown with AMF from ecological management soils were less attacked by leafminers. Also, the insect preferred to oviposit on plants with higher aerial biomass, and this preference increased in plants with lower P content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  • Achhami BB, Reddy GV, Hofland ML, Sherman JD, Peterson RK, Weaver DK (2021) Plant volatiles and oviposition behavior in the selection of barley cultivars by wheat stem sawfly (Hymenoptera: Cephidae). Environ Entomol 50:940–947

    Article  CAS  PubMed  Google Scholar 

  • Barber NA, Kiers ET, Thei N, Hazzard RV, Adler LS (2013) Linking agricultural practices, mycorrhizal fungi, and traits mediating plant-insect interactions. Ecol Appl 23:1519–1530. https://doi.org/10.1890/13-0156.1

    Article  PubMed  Google Scholar 

  • Bates D, Mächler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using lme4. J Stat Softw 67:1–48. https://doi.org/10.18637/jss.v067.i01

    Article  Google Scholar 

  • Bowles TM, Jackson LE, Loeher M, Cavagnaro TR (2016) Ecological intensification and arbuscular mycorrhizas: a meta-analysis of tillage and cover crop effects. J Appl Ecol 54:1785–1793. https://doi.org/10.1111/1365-2664.12815

    Article  Google Scholar 

  • Butinof M, Fernández RA, Lerda D, Lantieri MJ, Filippi I, Díaz MDP (2019) Biomonitoreo en exposición a plaguicidas y su aporte en vigilancia epidemiológica en agroaplicadores en Córdoba, Argentina. Gac Sanit 33:216–221

    Article  PubMed  Google Scholar 

  • Cappelli SL, Domeignoz-Horta LA, Loaiza V, Laine AL (2022) Plant biodiversity promotes sustainable agriculture directly and via belowground effects. Trends Plant Sci 27:674–687. https://doi.org/10.1016/j.tplants.2022.02.003

    Article  CAS  PubMed  Google Scholar 

  • Carballar-Hernández S, Hernández-Cuevas LV, Montaño NM, Larsen R, Ferrera-Cerrato R, Taboada-Gaytán OR, Montiel-González AM, Alarcón A (2017) Native communities of arbuscular mycorrhizal fungi associated with Capsicum annuum L. respond to soil properties and agronomic management under field conditions. Agric Ecosys Environ 245:43–51

    Article  Google Scholar 

  • Catullo JC, Arguello Caro EB, Narmona MN, Silbert V, Yosviak M, Scifo A, Prado A, Pietrarelli L, Videla M, Serra G, Flores MA, Gaona VV (2020) Construcción de conocimiento en redes de innovación para el uso de bioinsumos en sistemas hortícolas. Agrocienc Uru 24:342

    Google Scholar 

  • Cofré MN, Ferrari AE, Becerra A, Domínguez L, Wall LG, Urcelay C (2017) Effects of cropping systems under no-till agriculture on arbuscular mycorrhizal fungi in Argentinean Pampas. Soil Use Manag 33:364–378

    Article  Google Scholar 

  • Cofré N, Becerra AG, Marro N, Domínguez L, Urcelay C (2020) Soybean growth and foliar phosphorous concentration mediated by arbuscular mycorrhizal fungi from soils under different no-till cropping systems. Rhizosphere 16:100254

    Article  Google Scholar 

  • Cofré MN, Grilli G, Marro NA, Videla M, Urcelay RC (2021) Comunidades de hongos micorrícicos en suelos hortícolas con manejo agroecológico y convencional en el Cinturón Verde de Córdoba. In: Sociedad Argentina de Agroecología (ed) II Congreso Argentino de Agroecología

  • Delavaux CS, Smith-Ramesh LM, Kuebbing SE (2017) Beyond nutrients: a meta-analysis of the diverse effects of arbuscular mycorrhizal fungi on plants and soils. Ecology 98:2111–2119

    Article  PubMed  Google Scholar 

  • Dıaz S, Symstad AJ, Chapin FS, Wardle DA, Huenneke LF (2003) Functional diversity revealed by removal experiments. Trends Ecol Evol 18:140–146

    Article  Google Scholar 

  • Eandi MA, Dezzotti L, Butinof M (2021) Exposición a plaguicidas y cuidados de la salud en la horticultura periurbana: el caso del Cinturón Verde de la Ciudad de Córdoba, Argentina. Ciênc Saúde Colet 26:1575–1584

    Article  Google Scholar 

  • Eichholtzer J, Ballina-Gómez HS, Gómez-Tec K, Medina-Dzul K (2021) Arbuscular mycorrhizal fungi influence whitefly abundance by modifying habanero pepper tolerance to herbivory. Arthropod Plant Interact 15:861–874. https://doi.org/10.1007/s11829-021-09868-8

    Article  Google Scholar 

  • Gao D, Pan X, Zhou X, Wei Z, Li N, Wu F (2020) Phosphorus fertilization and intercropping interactively affect tomato and potato onion growth and rhizosphere arbuscular mycorrhizal fungal community. Arch Agron Soil Sci 67:919–933. https://doi.org/10.1080/03650340.2020.1768530

    Article  CAS  Google Scholar 

  • Garibaldi LA, Gemmill-Herren B, D’Annolfo R, Graeub BE, Cunningham SA, Breeze TD (2017) Farming approaches for greater biodiversity, livelihoods, and food security. Trends Ecol Evol 32:68–80. https://doi.org/10.1016/j.tree.2016.10.001

    Article  PubMed  Google Scholar 

  • Gottshall CB, Cooper M, Emery SM (2017) Activity, diversity and function of arbuscular mycorrhizae vary with changes in agricultural management intensity. Agric Ecosyst Environ 241:142–149

    Article  Google Scholar 

  • Grace C, Stribley DP (1991) A safer procedure for routine staining of vesicular-arbuscular mycorrhizal fungi. Mycol Res 95:1160–1162

    Article  Google Scholar 

  • Grilli G, Urcelay C, Galetto L, Davison J, Vasar M, Saks Ü, Jairus T, Öpik M (2015) The composition of arbuscular mycorrhizal fungal communities in the roots of a ruderal forb is not related to the forest fragmentation process. Environ Microbiol 17:2709–2720. https://doi.org/10.1111/1462-2920.12623

    Article  PubMed  Google Scholar 

  • Gripenberg S, Mayhew PJ, Parnell M, Roslin T (2010) A meta-analysis of preference–performance relationships in phytophagous insects. Ecol Lett 13:383–393

    Article  PubMed  Google Scholar 

  • Grunseich JM, Thompson MN, Aguirre NM, Helms AM (2019) The role of plant-associated microbes in mediating host-plant selection by insect herbivores. Plants 9:6

    Article  PubMed  PubMed Central  Google Scholar 

  • Hartig F (2018) DHARMa: residual diagnostics for hierarchical (multi-level/mixed) regression models. R package v.0.2.0. https://cran.rproject.org/package=DHARMa.

  • Heinen R, Biere A, Harvey JA, Bezemer TM (2018) Effects of soil organisms on aboveground plant-insect interactions in the field: patterns, mechanisms and the role of methodology. Front Ecol Evol 6:106. https://doi.org/10.3389/fevo.2018.00106

    Article  Google Scholar 

  • Jernigan AB, Wickings K, Mohler CL, Caldwel BA, Pelzer CJ, Wayman S, Ryan MR (2020) Legacy effects of contrasting organic grain cropping systems on soil health indicators, soil invertebrates, weeds, and crop yield. Agric Syst 177:102719

    Article  Google Scholar 

  • Joern A, Provin T, Behme ST (2012) Not just the usual suspects: insect herbivore populations and communities are associated with multiple plant nutrients. Ecology 93:1002–1015

    Article  PubMed  Google Scholar 

  • Johnson NC, Graham JH, Smith FA (1997) Functioning of mycorrhizal associations along the mutualism–parasitism continuum. New Phytol 135:575–585. https://doi.org/10.1046/j.1469-8137.1997.00729

    Article  Google Scholar 

  • Jones JB, Wolf B, Mills HA (1991) Plant analysis handbook. A practical sampling, preparation, analysis, and interpretation guide. Micro-Macro Publishing Inc., Athens

    Google Scholar 

  • Jung SC, Martinez-Medina A, Lopez-Raez JA, Pozo MJ (2012) Mycorrhiza-induced resistance and priming of plant defenses. J Chem Ecol 38:651–664. https://doi.org/10.1007/s10886-012-0134-6

    Article  CAS  PubMed  Google Scholar 

  • Kaur J, Chavana J, Soti P, Racelis A, Kariyat R (2020) Arbuscular mycorrhizal fungi (AMF) influences growth and insect community dynamics in Sorghum-sudangrass (Sorghum x drummondii). Arthropod Plant Interact 14:301–315

    Article  Google Scholar 

  • Khan MS, Zaidi A, Wani PA (2007) Role of phosphate-solubilizing microorganisms in sustainable agriculture-a review. Agron Sustain Dev 27:29–43. https://doi.org/10.1007/978-90-481-2666-8-34

    Article  Google Scholar 

  • Köhl L, Oehl F, van der Heijden MGA (2014) Agricultural practices indirectly influence plant productivity and ecosystem services through effects on soil biota. Ecol Appl 24:1842–1853. https://doi.org/10.1890/13-1821.1

    Article  PubMed  Google Scholar 

  • Lanfranco L, Fiorilli V, Gutjahr C (2018) Partner communication and role of nutrients in the arbuscular mycorrhizal symbiosis. New Phytol 220:1031–1046

    Article  PubMed  Google Scholar 

  • Lenth R (2019) Emmeans: estimated marginal means, aka least squares means. R package version 1.3.4. Retrieved from https://CRAN.R-project.org/package=emmeans.

  • Lichtenberg M, Kenned CM, Kremen C, Batáry P, Berendse F et al (2017) A global synthesis of the effects of diversified farming systems on arthropod diversity within fields and across agricultural landscapes. Glob Chang Biol 23:4946–4957. https://doi.org/10.1111/gcb.13714

    Article  PubMed  Google Scholar 

  • Longo S, Nouhra E, Tecco PA, Urcelay C (2020) Functional stability of mycorrhizal interactions in woody natives and aliens facing fire disturbance. Plant Ecol 221:321–331

    Article  Google Scholar 

  • Ma M, Ongena M, Wang Q, Guan D, Cao F, Jiang X, Li J (2018) Chronic fertilization of 37 years alters the phylogenetic structure of soil arbuscular mycorrhizal fungi in Chinese Mollisols. AMB Express 8:1–10

    Article  Google Scholar 

  • Mäder P, Fliessbach A, Dubois D, Gunst L, Fried P, Niggli U (2022) Soil fertility and biodiversity in organic farming. Science 296:1694–1947. https://doi.org/10.1126/science.1071148. (PMID: 12040197)

    Article  Google Scholar 

  • Magnusson A, Hans S, Nielsen A, Berg C, Kristensen K, Marchler M, van Bentham K, Bolker B, Brooks M (2017) Package ‘glmmTMB’. R Package Version 0.2.0.

  • Manoharan L, Rosenstock NP, Williams A, Hedlund K (2017) Agricultural management practices influence AMF diversity and community composition with cascading effects on plant productivity. Appl Soil Ecol 115:53–59

    Article  Google Scholar 

  • Marro N, Cofré N, Grilli G, Alvarez LD, Maestri D, Urcelay C (2020) Soybean yield, protein content and oil quality in response to interaction of arbuscular mycorrhizal fungi and native microbial populations from mono- and rotation-cropped soils. Appl Soil Ecol 152:103575. https://doi.org/10.1016/j.apsoil.2020.103575

    Article  Google Scholar 

  • Marro N, Grilli G, Soteras F, Caccia M, Longo S, Cofré N, Borda V, Burni M, Janoušková M, Urcelay C (2022) The effects of arbuscular mycorrhizal fungal species and taxonomic groups on stressed and unstressed plants: a global meta-analysis. New Phytol 35:320–332. https://doi.org/10.1111/nph.18102

    Article  CAS  Google Scholar 

  • Mc Gonigle TP, Miller MH, Evans DG, Fairchild GL, Swan JA (1990) A new method which gives an objective measure of colonization of roots by vesicular–arbuscular mycorrhizal fungi. New Phytol 115:495–501

    Article  CAS  PubMed  Google Scholar 

  • Mou B, Liu YB (2004) Host plant resistance to leafminers in lettuce. J Am Soc Hortic Sci 129:383–388

    Article  Google Scholar 

  • Oehl F, Laczko E, Bogenrieder A, Stahr K, Bösch V, van der Heijden M, Sieverdin E (2010) Soil type and land use intensity determine the composition of arbuscular mycorrhizal fungal communities. Soil Biol Biochem 42:724–738

    Article  CAS  Google Scholar 

  • Orine D, Defossez E, Vergara F, Uthe H, van Dam NM, Rasmann S (2022) Arbuscular mycorrhizal fungi prevent the negative effect of drought and modulate the growth-defence trade-off in tomato plants. J Sustain Agric Environ 1:177–190. https://doi.org/10.1002/sae2.12018

    Article  Google Scholar 

  • Parrella MP, Keil CB, Morse JG (1984) Insecticide resistance in Liriomyza trifolii. Calif Agric 38:22–23

    Google Scholar 

  • Phillips JM, Hayman DS (1970) Improved procedures for clearing roots and staining parasitic and vesicular– arbuscular mycorrhizal fungi for rapid assessment of infection. Trans Br Mycol Soc 55:158

    Article  Google Scholar 

  • R Core Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Reitz SR, Gao Y, Lei Z (2013) Insecticide use and the ecology of invasive Liriomyza leafminer management. Insecticides—Development of safer and more effective technologies. IntechOpen, London, pp 235–255

    Google Scholar 

  • Sakariyawo AA, Mogaji NO, Adeyemi NO, Atayese MO, Lawal IO (2019) Performance of maize (Zea mays L.) cultivars and community structure of arbuscular mycorrhizal fungi in response to tillage practices and soil amendments in a derived Savanna. Acta Fytotechn Zootechn 22:114–123

    Article  Google Scholar 

  • Stratton CA, Ray S, Bradley B, Kaye JP, Ali JG, Murrell EG (2022) Nutrition vs association: plant defenses are altered by arbuscular mycorrhizal fungi association not by nutritional provisioning alone. BMC Plant Biol 22:400. https://doi.org/10.1186/s12870-022-03795-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thiele-Bruhn S, Bloem J, de Vries FT, Kalbitz K, Wagg C (2012) Linking soil biodiversity and agricultural soil management. Curr Opin Environ Sustain 4:523–528. https://doi.org/10.1016/j.cosust.2012.06.004

    Article  Google Scholar 

  • Urcelay C, Longo S, Geml J, Tecco PA (2019) Can arbuscular mycorrhizal fungi from non-invaded montane ecosystems facilitate the growth of alien trees? Mycorrhiza 29:39–49

    Article  CAS  PubMed  Google Scholar 

  • Verbruggen E, Roling WFM, Gamper HA, Kowalchuk GA, Verhoef HA, van der Heijden MGA (2010) Positive effects of organic farming on below-ground mutualists: large-scale comparison of mycorrhizal fungal communities in agricultural soils. New Phytol 186:968–979. https://doi.org/10.1111/j.1469-8137.2010.03230.x

    Article  CAS  PubMed  Google Scholar 

  • Videla M, Valladares G, Salvo A (2006) A tritrophic analysis of host preference and performance in a polyphagous leafminer. Entomol Exp Appl 121:105–114

    Article  Google Scholar 

  • Wardle DA (2002) Communities and ecosystems: linking the aboveground and belowground components. Princeton University Press, Princeton

    Google Scholar 

  • Weeraddana CDS, Evenden ML (2018) Canola nutrition and variety affect oviposition and offspring performance in the generalist herbivore, Mamestra configurata (Lepidoptera: Noctuidae). J Econ Entomol 111:1702–1710

    Article  PubMed  Google Scholar 

  • Weintraub P, Scheffer SJ, Visser VG, Soares Correa A, Shepard BM, Metzler HB (2017) The invasive Liriomyza huidobrensis (Diptera: Agromyzidae): understanding its pest status and management globally. J Insect Sci 17:28. https://doi.org/10.1093/jisesa/iew121

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang L, Rana I, Taioli E, Shaffer RM, Sheppard L (2019) Exposure to glyphosate—based herbicides and risk for non-Hodgkin lymphoma: a meta-analysis and supporting evidence. Mutat Res Rev Mutat Res 781:186–206. https://doi.org/10.1016/j.mrrev.2019.02.001

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the farmers of the sampled sites from Córdoba green belt (Argentina) for kindly letting us extract soil samples from their fields, and the Secretaría de Ciencia y Técnica (Universidad Nacional de Córdoba), Ministerio de Ciencia y Tecnología (Córdoba, Argentina), Fondo para la investigación Científica y Tecnológica and Consejo Nacional de Investigaciones Científicas y Técnicas for their funding.

Funding

This study was funded by Secretaría de Ciencia y Técnica (Universidad Nacional de Córdoba), Ministerio de Ciencia y Tecnología (Córdoba, Argentina), Fondo para la investigación Científica y Tecnológica (FONCyT) and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Milena Caccia.

Ethics declarations

Competing interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Handling Editor: Severin Hatt.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Caccia, M., Urcelay, C. & Videla, M. Complex relationships between lettuce (Lactuca sativa), arbuscular mycorrhizal fungi, and a leafminer pest in a context of ecological soil management. Arthropod-Plant Interactions 17, 253–261 (2023). https://doi.org/10.1007/s11829-023-09954-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11829-023-09954-z

Keywords

Navigation