Skip to main content
Log in

Ab Initio Study of Stability, Local Order, and Phase Diagram For a Series of bcc-based Transition Metal Alloys

  • Published:
Journal of Phase Equilibria and Diffusion Aims and scope Submit manuscript

Abstract

A parameter-free electronic structure approach is applied to the study of stability and chemical order in the 15 substitutional body-centered cubic (bcc)-based alloys made of the six transition metals of groups 5 (V, Nb, Ta) and 6 (Cr, Mo, W) of the periodic table. The method is based on a Green’s function description of the electronic structure of the random alloys. Configurational order is treated within the generalized perturbation method, and temperature effects are examined with a generalized mean-field approach. In contrast to the results summarized in the assessed phase diagrams, stability and ordering trends are predicted in a broad range of alloy composition for at least seven alloys, and explanation is found in their electronic structure properties. Short-range order results, thermodynamics analysis, and bcc-based phase diagrams are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. T. Massalski and P.R. Subramanian, Binary Alloy Phase Diagrams, ASM international, Cleveland, 1990

    Google Scholar 

  2. R. Krishnan, S.P. Garg, and N. Krishnamurthy, Tantalum–Tungsten System, J. Alloys Phase Diag., 1987, 3(1), p 1-3

    Google Scholar 

  3. S.C. Singhal and W.L. Worrell, High-Temperature Thermodynamic Properties of Solid Ta-W Alloys, Met. Trans., 1973, 4, p 895-898. https://doi.org/10.1007/BF02645586

    Article  Google Scholar 

  4. H.J. Goldschmidt and J.A. Brand, The Constitution of the Chromium-Niobium-Molybdenum System, J. Less-Common Met., 1961, 3, p 44-61. https://doi.org/10.1016/0022-5088(61)90042-X

    Article  Google Scholar 

  5. C. Schmetterer, A. Khvan, A. Jacob, B. Hallstedt, and T. Markus, A New Theoretical Study of the Cr-Nb System, J. Phase Equilib. Diffus., 2014, 35, p 434-444. https://doi.org/10.1007/s11669-014-0313-y

    Article  Google Scholar 

  6. H.J. Goldschmidt and J.A. Brand, The Constitution of the Chromium-Niobium-Silicon System, J. Less-Common Met., 1961, 3, p 34-43. https://doi.org/10.1016/0022-5088(61)90041-8

    Article  Google Scholar 

  7. H. Okamoto, Cr-Ta (Chromium-Tantalum), J. Phase Equilib. Diffus., 2006, 27, p 199. https://doi.org/10.1007/s11669-006-0060-9

    Article  Google Scholar 

  8. G. Ghosh, Thermodynamic and Kinetic Modeling of the Cr-Ti-V System, J. Phase Equilib., 2002, 23(4), p 310-328. https://doi.org/10.1361/105497102770331569

    Article  ADS  Google Scholar 

  9. S.C. Singhal and W.L. Worrell, A High-Temperature Thermodynamic Investigation of the Nb-Mo System, Met. Trans., 1973, 4, p 1125-1128. https://doi.org/10.1007/BF02645616

    Article  Google Scholar 

  10. R. Predmore and R.J. Arsenault, Short-Range Order of Ta-Mo Bcc Alloys, Scr. Metall., 1970, 4, p 213-218. https://doi.org/10.1016/0036-9748(70)90195-X

    Article  Google Scholar 

  11. S.C. Singhal and W.L. Worrell, An EMF study of the high-temperature thermodynamic properties of solid tantalum-molybdenum alloys, in Metallurgical ChemistryProceedings of a symposium held at Brunel University and the National Physical Laboratory, 1972, 1.5–1, 65

  12. J. Bratberg and K. Frisk, A Thermodynamic Analysis of the Mo-V and Mo-V-C Systems, Calphad, 2002, 26(3), p 459-476. https://doi.org/10.1016/S0364-5916(02)00057-3

    Article  Google Scholar 

  13. R.T. Begley and J.H. Bechtold, Effect of Alloying on the Mechanical Properties of Niobium, J. Less-Common Met., 1961, 3, p 1-12. https://doi.org/10.1016/0022-5088(61)90037-6

    Article  Google Scholar 

  14. J.F. Smith and O.N. Carlson, The Ta-V (Tantalum-Vanadium) System, J. Phase Equilib., 1983, 4(3), p 284-289. https://doi.org/10.1007/BF02868668

    Article  Google Scholar 

  15. J.F. Smith and O.N. Carlson, Ta-V (Tantalum-Vanadium), Phase Diagrams of Binary Vanadium Alloys, ASM International, Cleveland, 1989, p 276-282

    Google Scholar 

  16. C.A. Danon and C. Servant, A Thermodynamic Evaluation of the Ta-V System, J. Alloys Compd., 2004, 366, p 191-200. https://doi.org/10.1016/S0925-8388(03)00728-X

    Article  Google Scholar 

  17. H. Okamoto, Ta-V (Tantalum-Vanadium), J. Phase Equilib. Diffus., 2005, 26, p 298-299. https://doi.org/10.1007/s11669-005-0127-z

    Article  Google Scholar 

  18. J. Hohe and P. Gumbsch, On the Potential of Tungsten-Vanadium Composites for High Temperature Application with Wide-Range Thermal Operation Window, J. Nucl. Mater., 2010, 400, p 218-231. https://doi.org/10.1016/j.jnucmat.2010.03.007

    Article  ADS  Google Scholar 

  19. R.W. Cahn, The Place of Atomic Order in the Physics of Solids in Metallurgy, Springer Series in Materials Science, Vol 27, F.E. Fujita, Ed., Springer, Berlin, 1994

    Google Scholar 

  20. O.N. Senkov, G.B. Wilks, D.B. Miracle, C.P. Chuang, and P.K. Liaw, Refractory High-Entropy Alloys, Intermetallics, 2010, 18, p 1758-1765. https://doi.org/10.1016/j.intermet.2010.05.014

    Article  Google Scholar 

  21. F. Ducastelle and F. Gautier, Generalized Perturbation Theory in Disordered Transitional Alloys: Applications to the Calculation of Ordering Energies, J. Phys. F: Met. Phys., 1976, 6(11), p 2039-2062. https://doi.org/10.1088/0305-4608/6/11/005

    Article  ADS  Google Scholar 

  22. F. Ducastelle, Order and Phase Stability in Alloys, Cohesion and Structure Series, Vol 3, F.R. de Boer and D.G. Pettifor, Ed., North-Holland, Amsterdam, 1991

    Google Scholar 

  23. J.S. Faulkner, The Modern Theory of Alloys, Prog. Mater Sci., 1982, 27(1–2), p 1-187. https://doi.org/10.1016/0079-6425(82)90005-6

    Article  Google Scholar 

  24. I. Turek, V. Drchal, J. Kudrnovsky, M. Sob, and P. Weinberger, Electronic Structure of Disordered Alloys, Surfaces and Interfaces, Kluwer Academic Publishers, Boston-London-Dordrecht, 1997

    Book  Google Scholar 

  25. R. Kikuchi, A Theory of Cooperative Phenomena, Phys. Rev., 1981, 81, p 988-1002. https://doi.org/10.1103/PhysRev.81.988

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. P.E.A. Turchi, A. Gonis, V. Drchal, and J. Kudrnovsky, First-principles study of stability and local order in substitutional Ta-W alloys, Phys. Rev. B, 2001, 64, p 085112-1-085112-8. https://doi.org/10.1103/PhysRevB.64.085112

    Article  ADS  Google Scholar 

  27. P.E.A. Turchi, V. Drchal, J. Kudrnovsky, C. Colinet, L. Kaufman, and Z.-K. Liu, Application of ab initio and CALPHAD thermodynamics to Mo-Ta-W alloys, Phys. Rev. B, 2005, 71, p 094206-1-094206-14. https://doi.org/10.1103/PhysRevB.71.094206

    Article  ADS  Google Scholar 

  28. P.E.A. Turchi, Electronic Theories of Alloy Phase Stability, Intermetallic Compounds: Principles and Practice, Vol 1, J.H. Westbrook and R.L. Fleischer, Ed., Wiley, New York, 1995, p 21-54

    Google Scholar 

  29. D.M. Ceperley and B.J. Alder, Ground State of the Electron Gas by a Stochastic Method, Phys. Rev. Lett., 1980, 45, p 566-568. https://doi.org/10.1103/PhysRevLett.45.566

    Article  ADS  Google Scholar 

  30. J.P. Perdew and A. Zunger, Self-Interaction Correction to Density-Functional Approximations for Many-Electron Systems, Phys. Rev. B, 1981, 23(10), p 5048-5079. https://doi.org/10.1103/PhysRevB.23.5048

    Article  ADS  Google Scholar 

  31. S.H. Wei, L.G. Ferreira, J.E. Bernard, and A. Zunger, Electronic Properties of Random Alloys: Special Quasirandom Structures, Phys. Rev. B, 1990, 42, p 9622-9649. https://doi.org/10.1103/PhysRevB.42.9622

    Article  ADS  Google Scholar 

  32. C. Jiang, C. Wolverton, J. Sofo, L.-Q. Chen, and Z.-K. Liu, First-Principles Study of Binary Bcc Alloys Using Special Quasi-Random Structures, Phys. Rev. B, 2004, 69(21), p 214202-1-214202-10. https://doi.org/10.1103/PhysRevB.69.214202

    Article  ADS  Google Scholar 

  33. M. Muzyk, D. Nguyen-Manh, J. Wrobel, K.J. Kurzydlowski, N.L. Baluc, and S.L. Dudarev, First-Principles Model for Phase Stability, Radiation Defects and Elastic Properties of W-Ta and W-V Alloys, J. Nucl. Mater., 2013, 442, p S680-S683. https://doi.org/10.1016/j.jnucmat.2012.10.025

    Article  ADS  Google Scholar 

  34. A. Gonis, Green Functions for Ordered and Disordered Systems, Studies in Mathematical Physics, Vol 4, E. van Groesen and E.M. de Jager, Ed., North Holland, Amsterdam, 1992

    Google Scholar 

  35. C. Colinet, A. Bessoud, and A. Pasturel, Theoretical determinations of thermodynamic data and phase diagrams of bcc binary transition–metal alloys, J. Phys. F: Met. Phys., 1988, 18, p 903-921. https://doi.org/10.1088/0305-4608/18/5/010

    Article  ADS  Google Scholar 

  36. R.J. Hawkins, M.O. Robbins, and J.M. Sanchez, Electronic-structure calculations of binary alloy phase diagrams, Phys. Rev. B, 1986, 33(7), p 4782-4792

    Article  ADS  Google Scholar 

  37. G. Kresse and J. Furthmuller, Efficiency of Ab-Initio Total Energy Calculations for Metals and Semiconductors Using a Plane-Wave Basis Set, Comput. Mater. Sci., 1996, 6(1), p 15-50. https://doi.org/10.1016/0927-0256(96)00008-0

    Article  Google Scholar 

  38. G. Kresse and J. Furthmuller, Efficient Iterative Schemes for Ab Initio Total-Energy Calculations Using Plane-Wave Basis Set, Phys. Rev. B, 1996, 54(16), p 11169-11186. https://doi.org/10.1103/PhysRevB.54.11169

    Article  ADS  Google Scholar 

  39. G. Kresse and D. Joubert, From Ultrasoft Pseudopotentials to the Projector Augmented-Wave Method, Phys. Rev. B, 1999, 59(3), p 1758-1775. https://doi.org/10.1103/PhysRevB.59.1758

    Article  ADS  Google Scholar 

  40. C. Jiang, First-Principles Study of Ternary Bcc Alloys Using Special Quasi-Random Structures, Acta Mater., 2009, 57, p 4716-4726. https://doi.org/10.1016/j.actamat.2009.06.026

    Article  ADS  Google Scholar 

  41. V. Blum and A. Zunger, Prediction of Ordered Structures in the Bcc Binary Systems of Mo, Nb, Ta, and W from First-Principles Search of Approximately 3,000,000 Possible Configurations, Phys. Rev. B, 2005. https://doi.org/10.1103/PhysRevB.72.020104

    Article  Google Scholar 

  42. J.W.D. Connolly and A.R. Williams, Density-Functional Theory Applied to Phase Transformations in Transition–Metal Alloys, Phys. Rev. B, 1983, 27(8), p 5169-5172

    Article  ADS  Google Scholar 

  43. P.E.A. Turchi, V. Drchal, and J. Kudrnovsky, Stability and Ordering Properties of fcc-Based Alloys Based on Rh, Ir, Pd, and Pt, Phys. Rev. B, 2006, 74, p 064202-1-064202-12. https://doi.org/10.1103/PhysRevB.74.0642022

    Article  ADS  Google Scholar 

  44. M. Hennion, Chemical SRO Effects in Ferromagnetic Fe Alloys in Relation to Electronic Band Structure, J. Phys. F: Met. Phys., 1983, 13(11), p 2351-2358. https://doi.org/10.1088/0305-4608/13/11/017

    Article  ADS  Google Scholar 

  45. A. Gonis, P.P. Singh, P.E.A. Turchi, and X.G. Zhang, Use of the Ising Model in the Study of Substitutional Alloys, Phys. Rev. B, 1995, 51(4), p 2122-2131. https://doi.org/10.1103/PhysRevB.51.2122

    Article  ADS  Google Scholar 

  46. J.M. Sanchez, F. Ducastelle, and D. Gratias, Generalized Cluster Description of Multicomponent Systems, Phys. A, 1984, 128(1–2), p 334-350. https://doi.org/10.1016/0378-4371(84)90096-7

    Article  MathSciNet  Google Scholar 

  47. J.M. Sanchez, Cluster Expansions and the Configurational Energy of Alloys, Phys. Rev. B, 1993, 48(18), p 14013-14015

    Article  ADS  Google Scholar 

  48. J.M. Sanchez, Cluster Expansion and the Configurational Theory of Alloys, Phys. Rev. B, 2010, 81(22), p 224202-1-224202-13. https://doi.org/10.1103/PhysRevB.81.224202

    Article  ADS  Google Scholar 

  49. J.M. Sanchez, Renormalized Interact Ions in Truncated Cluster Expansions, Phys. Rev. B, 2019, 99(13), p 134206-1-134206-18. https://doi.org/10.1103/PhysRevB.99.134206

    Article  ADS  Google Scholar 

  50. Finel, Thèse de Doctorat d’Etat es Sciences Physiques, University Paris VI, France, unpublished (1987); and Technical Report (ONERA 1987-3 (unpublished)

  51. A. Finel and F. Ducastelle, Phase Transformations in Solids, T. Tsakalakos, Ed., North-Holland, Amsterdam, 1984, p 293

    Google Scholar 

  52. A. Finel, D. Gratias, and R. Portier, L’Ordre et le Désordre dans les Matériaux, Les Editions de Physique, Les Ulis, 1984, p 9

    Google Scholar 

  53. N.S. Golosov and A.M. Tolstik, Theory of Order–Disorder and Order–Order Transformations in Binary Alloys with Bcc Lattice—I: Free Energy and Phase Equilibrium Equations, J. Phys. Chem. Solids, 1975, 36(9), p 899-902. https://doi.org/10.1016/0022-3697(75)90165-1

    Article  ADS  Google Scholar 

  54. C. Bichara and G. Inden, A combined Monte Carlo and cluster variation approach for calculating Gibbs energies and chemical potentials, in Statics and Dynamics of Alloy Phase Transformations, edited by P.E.A. Turchi and A. Gonis, NATO Advanced Studies Institute, Series B: Physics, Vol 319, Plenum Press, New York, 1994, p 541

  55. L.I. van Torne and G. Thomas, Structure and Mechanical Properties of Ta-Mo Alloy Single Crystals, Acta Metall., 1966, 14(5), p 621-635. https://doi.org/10.1016/0001-6160(66)90070-8

    Article  Google Scholar 

  56. L. Kaufman and H. Bernstein, Computer Calculation of Phase Diagrams with Special Reference to Refractory Metals, Refractory Materials, Academic Press, London, 1970

    Google Scholar 

  57. B. Sundman, B. Jansson, and J.-O. Andersson, The Thermo-Calc Databank System, Calphad, 1985, 9(2), p 153-190. https://doi.org/10.1016/0364-5916(85)90021-5

    Article  Google Scholar 

  58. P.E.A. Turchi, I.A. Abrikosov, B. Burton, S.G. Fries, G. Grimvall, L. Kaufman, P. Korzhavyi, V. Rao Manga, M. Ohno, A. Pisch, A. Scott, and W. Zhang, Interface Between Quantum-Mechanical-Based Approaches, Experiments, and CALPHAD Methodology, Calphad, 2007, 31, p 4-27. https://doi.org/10.1016/j.calphad.2006.02.009

    Article  Google Scholar 

  59. L. Reinhard and P.E.A. Turchi, Transient Ordered States in Phase-Separating Alloys, Phys. Rev. Lett., 1994, 72(1), p 120-123. https://doi.org/10.1103/PhysRevLett.72.120

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The original work from P. T. and contribution from A. P. were performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. Work at LLNL by A. P. was funded by the Laboratory Directed Research and Development Program under project tracking code 21-ERD-037. The work of V. D. and J. K. was supported by the Czech Science Foundation (Project No. 18-07172S).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. E. A. Turchi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Turchi, P.E.A., Drchal, V., Kudrnovsky, J. et al. Ab Initio Study of Stability, Local Order, and Phase Diagram For a Series of bcc-based Transition Metal Alloys. J. Phase Equilib. Diffus. 41, 737–755 (2020). https://doi.org/10.1007/s11669-020-00846-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11669-020-00846-w

Keywords

Navigation