Skip to main content
Log in

Iterative Construction of the Optimal Sunspot-Number Series

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

The relative number of sunspots represents the longest evidence describing the level of solar activity. As such, its use goes beyond solar physics, e.g. towards climate research. The construction of a single representative series is a delicate task that involves a combination of the observations of many observers. We propose a new iterative algorithm that allows construction of a target series of relative sunspot number of a hypothetical stable observer by optimally combining series obtained by many observers. We show that our methodology provides us with results that are comparable with recent reconstructions of both sunspot number and group number. Furthermore, the methodology accounts for the possible non-solar changes of observers’ time series such as gradually changing observing conditions or slow change in the observers’ vision. It also provides us with reconstruction uncertainties. We apply the methodology to a limited sample of observations by the ČESLOPOL network and discuss its properties and limitations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19

Similar content being viewed by others

Data Availability

The data are available upon reasonable request to the corresponding author. The compiled database used in this study is available as an example via GitHub repository. https://github.com/michalsvanda/sunspot_numbers.

Code Availability

The code (Švanda, 2022) is available via the GitHub repository. https://github.com/michalsvanda/sunspot_numbers

Notes

  1. https://www.sidc.be/silso/

  2. https://ssnworkshop.fandom.com/wiki/Home

  3. The program is available for download from https://www.asu.cas.cz/~sunwatch/cs/stranka/ke-stazeni, however, its interface is in the Czech language.

  4. In principle, the coefficients might be derived with respect to any reasonable description of \(g\) and \(f\). An option other than the SILSO sunspot number would be, for instance, a simple mean as plotted in panel a) in Figure 2. Another option would be to perform the process iteratively: (i) set both \(c_{g}\) and \(c_{f}\) to zero, (ii) perform the optimisation run as described by our methodology, use the resulting series as the reference, (iii) determine \(c_{g}\) and \(c_{f}\) with respect to this new reference and (iv) run a final optimisation.

  5. Note that a set of identifiers \(\beta \) forms a subset of the set of identifiers \(\alpha \). In the prediction period, some of the observers from the set of \(\alpha \)s may be missing (they did not observe). Similarly, there might be observations provided by other observers, for which the coefficients from the previous evaluation period do not exist (they did not observe during the evaluation period). Such an observer is not considered in forming the composite within the given prediction window.

  6. Note that this target series cropping also drops all the values from the initial series.

References

  • Carrington, R.C.: 1858, On the distribution of the solar spots in latitudes since the beginning of the year 1854, with a map. Mon. Not. Roy. Astron. Soc. 19, 1. DOI. ADS.

    Article  ADS  Google Scholar 

  • Carrington, R.C.: 1860, On two cases of solar spots in high latitudes, and on the surface currents indicated by the observations. Mon. Not. Roy. Astron. Soc. 20, 254. DOI. ADS.

    Article  ADS  Google Scholar 

  • Clette, F., Lefèvre, L.: 2016, The new sunspot number: assembling all corrections. Solar Phys. 291, 2629. DOI. ADS.

    Article  ADS  Google Scholar 

  • Clette, F., Berghmans, D., Vanlommel, P., Van der Linden, R.A.M., Koeckelenbergh, A., Wauters, L.: 2007, From the Wolf number to the International Sunspot Index: 25 years of SIDC. Adv. Space Res. 40, 919. DOI. ADS.

    Article  ADS  Google Scholar 

  • Clette, F., Svalgaard, L., Vaquero, J.M., Cliver, E.W.: 2014, Revisiting the sunspot number. A 400-year perspective on the Solar cycle. Space Sci. Rev. 186, 35. DOI. ADS.

    Article  ADS  Google Scholar 

  • Connolly, R., Soon, W., Connolly, M., Baliunas, S., Berglund, J., Butler, C.J., Cionco, R.G., Elias, A.G., Fedorov, V.M., Harde, H., Henry, G.W., Hoyt, D.V., Humlum, O., Legates, D.R., Lüning, S., Scafetta, N., Solheim, J.-E., Szarka, L., van Loon, H., Velasco Herrera, V.M., Willson, R.C., Yan, H., Zhang, W.: 2021, How much has the Sun influenced Northern Hemisphere temperature trends? An ongoing debate. Res. Astron. Astrophys. 21, 131. DOI. ADS.

    Article  ADS  Google Scholar 

  • Domingo, V., Fleck, B., Poland, A.I.: 1995, The SOHO mission: an overview. Solar Phys. 162, 1. DOI. ADS.

    Article  ADS  Google Scholar 

  • Foster, G.: 1997, Inflation of AAVSO sunspot counts. J. Amer. Accos. Var. Star Obs. 26, 50. ADS.

    ADS  Google Scholar 

  • Harris, C.R., Millman, K.J., van der Walt, S.J., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del Río, J.F., Wiebe, M., Peterson, P., Gérard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: 2020, Array programming with NumPy. Nature 585, 357. DOI.

    Article  ADS  Google Scholar 

  • Harvey, J.W., Hill, F., Hubbard, R.P., Kennedy, J.R., Leibacher, J.W., Pintar, J.A., Gilman, P.A., Noyes, R.W., Title, A.M., Toomre, J., Ulrich, R.K., Bhatnagar, A., Kennewell, J.A., Marquette, W., Patron, J., Saa, O., Yasukawa, E.: 1996, The Global Oscillation Network Group (GONG). Project. Sci. 272, 1284. DOI. ADS.

    Article  Google Scholar 

  • Hathaway, D.H.: 2010, The Solar Cycle. Living Rev. Solar Phys. 7, 1. DOI. ADS.

    Article  ADS  Google Scholar 

  • Hoyt, D.V., Schatten, K.H.: 1998, Group sunspot numbers: a new solar activity reconstruction. Solar Phys. 179, 189. DOI. ADS.

    Article  ADS  Google Scholar 

  • Křivský, L.: 1978a, An appeal to the observers of sunspots. Kozmos 9, 85. ADS.

    ADS  Google Scholar 

  • Křivský, L.: 1978b, Appeal to observers of sunspots. Říše hvězd 59, 95.

    Google Scholar 

  • Lockwood, M., Owens, M.J., Barnard, L., Usoskin, I.G.: 2016, An assessment of sunspot number data composites over 1845-2014. Astrophys. J. 824, 54. DOI. ADS.

    Article  ADS  Google Scholar 

  • Mathieu, S., von Sachs, R., Ritter, C., Delouille, V., Lefèvre, L.: 2019, Uncertainty quantification in sunspot counts. Astrophys. J. 886, 7. DOI. ADS.

    Article  ADS  Google Scholar 

  • McIntosh, P.S.: 1990, The classification of sunspot groups. Solar Phys. 125, 251. DOI. ADS.

    Article  ADS  Google Scholar 

  • McKinney, W.: 2010, Data structures for statistical computing in Python. In: Proceedings of the 9th Python in Science Conference 445, 51. Austin, TX.

    Google Scholar 

  • Pavelková, M., Švanda, M.: 2021, Solar photosphere drawings – an ancient case? Astropis 127, 6.

    Google Scholar 

  • Schaefer, B.E.: 1997, Automatic inflation in the AAVSO sunspot number. J. Amer. Accos. Var. Star Obs. 26, 40. ADS.

    ADS  Google Scholar 

  • Scheiner, C.: 1630, Rosa Ursina. DOI. ADS.

  • Schwabe, H.: 1844, Sonnenbeobachtungen im Jahre 1843. Von Herrn Hofrath Schwabe in Dessau. Astronomische Nachrichten 21, 233. DOI. ADS.

    Article  ADS  Google Scholar 

  • Solanki, S.K., Krivova, N.A., Haigh, J.D.: 2013, Solar irradiance variability and climate. Ann. Rev. Astron. Astrophys. 51, 311. DOI. ADS.

    Article  ADS  Google Scholar 

  • Spörer, G.: 1880, Beobachtungen der Sonnenflecken von Januar 1874 bis December 1879. Publikationen des Astrophysikalischen Observatoriums zu Potsdam 2, 1. ADS.

    ADS  Google Scholar 

  • Svalgaard, L., Schatten, K.H.: 2016, Reconstruction of the sunspot group number: the backbone method. Solar Phys. 291, 2653. DOI. ADS.

    Article  ADS  Google Scholar 

  • Švanda, M.: 2022, Sunspot numbers. DOI.

  • Taylor, P.O.: 1985, Computation of American relative sunspot numbers. J. Amer. Accos. Var. Star Obs. 14, 28. ADS.

    ADS  Google Scholar 

  • Vaquero, J.M., Svalgaard, L., Carrasco, V.M.S., Clette, F., Lefèvre, L., Gallego, M.C., Arlt, R., Aparicio, A.J.P., Richard, J.-G., Howe, R.: 2016, A revised collection of sunspot group numbers. Solar Phys. 291, 3061. DOI. ADS.

    Article  ADS  Google Scholar 

  • Velasco Herrera, V.M., Soon, W., Hoyt, D.V., Muraközy, J.: 2022, Group sunspot numbers: a new reconstruction of sunspot activity variations from historical sunspot records using algorithms from machine learning. Solar Phys. 297, 8. DOI. ADS.

    Article  ADS  Google Scholar 

  • Wikipedia contributors: 2022, Propagation of Uncertainty – Wikipedia, the Free Encyclopedia. https://en.wikipedia.org/w/index.php?title=Propagation_of_uncertainty&oldid=1088872058. Online; accessed 28-June-2022.

    Google Scholar 

  • Wolf, R.: 1851, Sonnenflecken Beobachtungen in der zweiten Hälfte des Jahres 1850. Mitt. Nat. forsch. Ges. Bern 207, 89.

    Google Scholar 

  • Wolf, R.: 1861, Mittheilungen über die Sonnenflecken XIII. Astronomische Mitteilungen der Eidgenössischen Sternwarte Zurich 2, 41.

    ADS  Google Scholar 

Download references

Acknowledgments

We would like to dedicate this paper to František Zloch (29. 1. 1949 – 11. 2. 2022), a meticulous solar observer at the Solar patrol of the Astronomical Institute of the Czech Academy of Sciences. He has held the project FOTOSFEREX for a very long time in times when the access to the international observations was close to impossible and a need for the local network of solar observers was pre-eminent. We would also like to thank the anonymous referee, who gave us many comments improving the paper.

Funding

Authors from the Astronomical Institute of the Czech Academy of Sciences were supported by the institution project ASU:67985815.

Author information

Authors and Affiliations

Authors

Contributions

MŠ designed the research, wrote the code, processed the data, wrote an initial manuscript draft. MP and BS digitised the observations. JD contributed the methodology from the mathematical point of view. All authors read and contributed to all manuscript versions.

Corresponding author

Correspondence to Michal Švanda.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Švanda, M., Pavelková, M., Dvořák, J. et al. Iterative Construction of the Optimal Sunspot-Number Series. Sol Phys 297, 151 (2022). https://doi.org/10.1007/s11207-022-02080-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11207-022-02080-8

Keywords

Navigation