Skip to main content
Log in

Mg ii Lines Observed During the X-class Flare on 29 March 2014 by the Interface Region Imaging Spectrograph

  • Solar and Stellar Flares
  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

Mg ii lines represent one of the strongest emissions from the chromospheric plasma during solar flares. In this article, we studied the Mg ii lines observed during the X1 flare on 29 March 2014 (SOL2014-03-29T17:48) by the Interface Region Imaging Spectrograph (IRIS). IRIS detected large intensity enhancements of the Mg ii \(h\) and \(k\) lines, subordinate triplet lines, and several other metallic lines at the flare footpoints during this flare. We have used the advantage of the slit-scanning mode (rastering) of IRIS and performed, for the first time, a detailed analysis of spatial and temporal variations of the spectra. Moreover, we were also able to identify positions of strongest hard X-ray (HXR) emissions using the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) observations and to correlate them with the spatial and temporal evolution of IRIS Mg ii spectra. The light curves of the Mg ii lines increase and peak contemporarily with the HXR emissions but decay more gradually. There are large red asymmetries in the Mg ii \(h\) and \(k\) lines after the flare peak. We see two spatially well-separated groups of Mg ii line profiles, non-reversed and reversed. In some cases, the Mg ii footpoints with reversed profiles are correlated with HXR sources. We show the spatial and temporal behavior of several other line parameters (line metrics) and briefly discuss them. Finally, we have synthesized the Mg ii \(k\) line using our non-LTE code with the Multilevel Accelerated Lambda Iteration (MALI) technique. Two kinds of models are considered, the flare model F2 of Machado et al. (Astrophys. J. 242, 336, 1980) and the models of Ricchiazzi and Canfield (Astrophys. J. 272, 739, 1983, RC models). Model F2 reproduces the peak intensity of the non-reversed Mg ii \(k\) profile at flare maximum, but does not account for high wing intensities. On the other hand, the RC models show the sensitivity of Mg ii line intensities to various electron-beam parameters. Our simulations also show that the microturbulence produces a broader line core, while the intense line wings are caused by an enhanced line source function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18

Similar content being viewed by others

References

  • Asai, A., Ichimoto, K., Kita, R., Kurokawa, H., Shibata, K.: 2012, A study on red asymmetry of H\(\upalpha\) flare ribbons using a narrowband filtergram in the 2001 April 10 solar flare. Publ. Astron. Soc. Japan 64, 20. DOI . ADS .

    Article  ADS  Google Scholar 

  • Avrett, E., Landi, E., McKillop, S.: 2013, Calculated resonance line profiles of [Mg ii], [C ii], and [Si iv] in the solar atmosphere. Astrophys. J. 779, 155. DOI . ADS .

    Article  ADS  Google Scholar 

  • Avrett, E.H., Machado, M.E., Kurucz, R.L.: 1986, Chromospheric flare models. In: Neidig, D.F. (ed.) The Lower Atmosphere of Solar Flares, 216. ADS .

    Google Scholar 

  • Bocchialini, K., Gouttebroze, P.: 1996, Solar chromospheric structures as observed simultaneously in strong UV lines. II. Network and cell modelling. Astron. Astrophys. 313, 949. ADS .

    ADS  Google Scholar 

  • Bonnet, J.: 1968, Recherches sur l’émission continue du Soelil entre 1950 & Aring et 3000 Å. Ann. Astrophys. 31, 597. ADS .

    ADS  Google Scholar 

  • De Pontieu, B., Title, A.M., Lemen, J.R., Kushner, G.D., Akin, D.J., Allard, B., et al.: 2014, The Interface Region Imaging Spectrograph (IRIS). Solar Phys. 289, 2733. DOI . ADS .

    Article  ADS  Google Scholar 

  • Deng, N., Tritschler, A., Jing, J., Chen, X., Liu, C., Reardon, K., Denker, C., Xu, Y., Wang, H.: 2013, High-cadence and high-resolution H\(\upalpha\) imaging spectroscopy of a circular flare’s remote ribbon with IBIS. Astrophys. J. 769, 112. DOI . ADS .

    Article  ADS  Google Scholar 

  • Druckmüller, M., Klvaňa, M., Druckmüllerová, Z.: 2007, Solar spectra analysis based on the statistical moment method. Cent. Eur. Astrophys. Bull. 31, 297. ADS .

    ADS  Google Scholar 

  • Fisher, G.H.: 1989, Dynamics of flare-driven chromospheric condensations. Astrophys. J. 346, 1019. DOI . ADS .

    Article  ADS  Google Scholar 

  • Fisher, G.H., Canfield, R.C., McClymont, A.N.: 1985, Flare loop radiative hydrodynamics – Part seven – Dynamics of the thick target heated chromosphere. Astrophys. J. 289, 434. DOI . ADS .

    Article  ADS  Google Scholar 

  • Freeland, S.L., Handy, B.N.: 1998, Data analysis with the SolarSoft system. Solar Phys. 182, 497. DOI . ADS .

    Article  ADS  Google Scholar 

  • Heinzel, P.: 1995, Multilevel NLTE radiative transfer in isolated atmospheric structures: implementation of the MALI-technique. Astron. Astrophys. 299, 563. ADS .

    ADS  Google Scholar 

  • Heinzel, P., Kleint, L.: 2014, Hydrogen Balmer continuum in solar flares detected by the Interface Region Imaging Spectrograph (IRIS). Astrophys. J. Lett. 794, L23. DOI . ADS .

    Article  ADS  Google Scholar 

  • Heinzel, P., Vial, J.-C., Anzer, U.: 2014, On the formation of Mg ii h and k lines in solar prominences. Astron. Astrophys. 564, A132. DOI . ADS .

    Article  ADS  Google Scholar 

  • Heinzel, P., Schmieder, B., Mein, N., Gunár, S.: 2015, Understanding the Mg ii and H\(\upalpha\) spectra in a highly dynamical solar prominence. Astrophys. J. Lett. 800, L13. DOI . ADS .

    Article  ADS  Google Scholar 

  • Hubeny, I., Mihalas, D.: 2014, Theory of Stellar Atmospheres, Princeton University Press, Princeton. ADS .

    Google Scholar 

  • Ichimoto, K., Kurokawa, H.: 1984, H-alpha red asymmetry of solar flares. Solar Phys. 93, 105. DOI . ADS .

    ADS  Google Scholar 

  • Kašparová, J., Heinzel, P.: 2002, Diagnostics of electron bombardment in solar flares from hydrogen Balmer lines. Astron. Astrophys. 382, 688. DOI . ADS .

    Article  ADS  Google Scholar 

  • Kerr, G.S., Simões, P.J.A., Qiu, J., Fletcher, L.: 2015, IRIS observations of the Mg ii h and k lines during a solar flare. Astron. Astrophys. 582, A50. DOI . ADS .

    Article  ADS  Google Scholar 

  • Kleint, L., Battaglia, M., Reardon, K., Sainz Dalda, A., Young, P.R., Krucker, S.: 2015a, The fast filament eruption leading to the X-flare on 2014 March 29. Astrophys. J. 806, 9. DOI . ADS .

    Article  ADS  Google Scholar 

  • Kleint, L., Heinzel, P., Judge, P., Krucker, S.: 2015b, Astrophys. J., in press

  • Kohl, J.L., Parkinson, W.H.: 1976, The Mg ii h and k lines. I – Absolute center and limb measurements of the solar profiles. Astrophys. J. 205, 599. DOI . ADS .

    Article  ADS  Google Scholar 

  • Leenaarts, J., Pereira, T.M.D., Carlsson, M., Uitenbroek, H., De Pontieu, B.: 2013, The formation of IRIS diagnostics. I. A quintessential model atom of Mg ii and general formation properties of the Mg ii h & k lines. Astrophys. J. 772, 89. DOI . ADS .

    Article  ADS  Google Scholar 

  • Lemaire, P., Choucq-Bruston, M., Vial, J.-C.: 1984, Simultaneous H and K Ca ii, h and k Mg ii, L-alpha and L-beta H i profiles of the April 15, 1978 solar flare observed with the OSO-8/L.P.S.P. experiment. Solar Phys. 90, 63. DOI . ADS .

    Article  ADS  Google Scholar 

  • Lemaire, P., Gouttebroze, P., Vial, J.C., Artzner, G.E.: 1981, Physical properties of the solar chromosphere deduced from optically thick lines. I – Observations, data reduction, and modelling of an average plage. Astron. Astrophys. 103, 160. ADS .

    ADS  Google Scholar 

  • Lin, R.P., Dennis, B.R., Hurford, G.J., Smith, D.M., Zehnder, A., Harvey, P.R., et al.: 2002, The Reuven Ramaty High-Energy Solar Spectroscopic Imager (RHESSI). Solar Phys. 210, 3. DOI . ADS .

    Article  ADS  Google Scholar 

  • Longcope, D.W.: 2014, A simple model of chromospheric evaporation and condensation driven conductively in a solar flare. Astrophys. J. 795, 10. DOI . ADS .

    Article  ADS  Google Scholar 

  • Machado, M.E., Avrett, E.H., Vernazza, J.E., Noyes, R.W.: 1980, Semiempirical models of chromospheric flare regions. Astrophys. J. 242, 336. DOI . ADS .

    Article  ADS  Google Scholar 

  • Milkey, R.W., Mihalas, D.: 1974, Resonance-line transfer with partial redistribution. II – The solar Mg ii lines. Astrophys. J. 192, 769. DOI . ADS .

    Article  ADS  Google Scholar 

  • Morrill, J.S., Korendyke, C.M.: 2008, High-resolution center-to-limb variation of the quiet solar spectrum near Mg ii. Astrophys. J. 687, 646. DOI . ADS .

    Article  ADS  Google Scholar 

  • Pereira, T.M.D., Leenaarts, J., De Pontieu, B., Carlsson, M., Uitenbroek, H.: 2013, The formation of IRIS diagnostics. III. Near-ultraviolet spectra and images. Astrophys. J. 778, 143. DOI . ADS .

    Article  ADS  Google Scholar 

  • Ricchiazzi, P.J., Canfield, R.C.: 1983, A static model of chromospheric heating in solar flares. Astrophys. J. 272, 739. DOI . ADS .

    Article  ADS  Google Scholar 

  • Rybicki, G.B., Hummer, D.G.: 1991, An accelerated lambda iteration method for multilevel radiative transfer. I – Non-overlapping lines with background continuum. Astron. Astrophys. 245, 171. ADS .

    ADS  Google Scholar 

  • Staath, E., Lemaire, P.: 1995, High resolution profiles of the Mg ii h and Mg ii k lines. Astron. Astrophys. 295, 517. ADS .

    ADS  Google Scholar 

  • Švestka, Z., Kopecký, M., Blaha, M.: 1962, Qualitative discussion of 244 flare spectra. II. Line asymmetry and helium lines. Bull. Astron. Inst. Czechoslov. 13, 37. ADS .

    ADS  Google Scholar 

  • Tang, F.: 1983, Flare asymmetry as seen in offband H-alpha filtergrams. Solar Phys. 83, 15. DOI . ADS .

    Article  ADS  Google Scholar 

  • Uitenbroek, H.: 1997, The solar Mg ii h and k lines – observations and radiative transfer modeling. Solar Phys. 172, 109. DOI . ADS .

    Article  ADS  Google Scholar 

  • Varady, M., Kasparova, J., Moravec, Z., Heinzel, P., Karlicky, M.: 2010, Modeling of solar flare plasma and its radiation. IEEE Trans. Plasma Sci. 38, 2249. DOI . ADS .

    Article  ADS  Google Scholar 

  • Vernazza, J.E., Avrett, E.H., Loeser, R.: 1981, Structure of the solar chromosphere. III – Models of the EUV brightness components of the quiet-sun. Astrophys. J. Suppl. 45, 635. DOI . ADS .

    Article  ADS  Google Scholar 

  • Young, P.R., Tian, H., Jaeggli, S.: 2015, The 2014 March 29 X-flare: subarcsecond resolution observations of Fe XXI \(\lambda\)1354.1. Astrophys. J. 799, 218. DOI . ADS .

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The research leading to these results has received funding from the European Community’s Seventh Framework Programme (FP7/2007 – 2013) under grant agreement 606862 (F-CHROMA) and from ASI ASCR project RVO:67985815. L.K. was supported by a Marie-Curie Fellowship. IRIS is a NASA small explorer mission developed and operated by LMSAL with mission operation executed at the NASA Ames Research Center and major contributions to downlink communications funded by the Norwegian Space Center (NSC, Norway) through an ESA PRODEX contract.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Liu.

Ethics declarations

Disclosure of Potential Conflicts of Interest

The authors declare that they have no conflicts of interest.

Additional information

Solar and Stellar Flares: Observations, Simulations, and Synergies

Guest Editors: Lyndsay Fletcher and Petr Heinzel

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, W., Heinzel, P., Kleint, L. et al. Mg ii Lines Observed During the X-class Flare on 29 March 2014 by the Interface Region Imaging Spectrograph . Sol Phys 290, 3525–3543 (2015). https://doi.org/10.1007/s11207-015-0814-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11207-015-0814-9

Keywords

Navigation