Skip to main content

Advertisement

Log in

Compositional variation of endangered spring fen biota reflects within-site variation in soil temperature

  • Research Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Aims and background

Groundwater-dependent minerotrophic fens are globally threatened biodiversity hotspots. The supply of groundwater keeps their soil thermally stable and mitigates climatic extremes by thermal buffering. This stability has been shown to influence species composition variation at the between-site scale but has not been studied at the within-site scale.

Methods

A total of 19 calcareous fens in the Western Carpathians were sampled for bryophytes, vascular plants, and terrestrial snails with three plots at each site along a watertable gradient, i.e. from the most waterlogged (plot A) through intermediately waterlogged (plot B) to the most terrestrial (plot C) areas. Temperature dataloggers were buried in each plot, and climate variables were derived from the climate database.

Results

Water table depth and soil temperature were the most important factors influencing species composition. Significant differences were found between spring source area (A) and fen margin (C) plots for all taxa groups studied. Soil temperature played a significant role at the site level only for bryophytes and vascular plants. However, a large overlap between water table depth and soil temperature for bryophytes also suggests a synergistic effect of these two factors.

Conclusion

Soil temperature plays an important role in promoting compositional variation of vegetation on the within-site scale (i.e. a pure effect of soil temperature) in groundwater-dependent mires, as we show here for the first time. This is essential in the light of ongoing climate change. Conservation measures should primarily focus on bryophytes as they are the most temperature-sensitive organisms and important ecosystem engineers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The datasets analysed during the current study are available from the corresponding author on reasonable request.

References

  • Ansart A, Guiller A, Moine O, Martin MC, Madec L (2014) Is cold hardiness size-constrained? A comparative approach in land snails. Evol Eco 283:471–493

    Article  Google Scholar 

  • Bain JT, Proctor MCF (1980) The requirement of aquatic bryophytes for free CO2 as an inorganic carbon source: some experimental evidence. New Phytol 86:393–400

    Article  CAS  Google Scholar 

  • Bedford BL, Godwin KS (2003) Fens of the United States: distribution, characteristics, and scientific connection versus legal isolation. Wetlands 23:608–629

    Article  Google Scholar 

  • Bedford BL, Walbridge MR, Aldous A (1999) Patterns in nutrient availability and plant diversity of temperate North American wetlands. Ecology 80:2151–2169

    Article  Google Scholar 

  • Bengtsson F, Rydin H, Baltzer JL, Bragazza L, Bu ZJ, Caporn SJ, Dorrepaal E, Flatberg KL, Galanina O, Gałka M, Ganeva A, Goia I, Goncharova N, Hájek M, Haraguchi A, Harris LI, Humphreys E, Jiroušek M, Kajukało K, Karofeld E, Koronatova NG, Kosykh NP, Laine AM, Lamentowicz M, Lapshina E, Limpens J, Linkosalmi M, Ma J-Z, Mauritz M, Mitchell EAD, Munir TM, Natali SM, Natcheva R, Payne RJ, Philippov DA, Rice SK, Robinson S, Robroek BJM, Rochefort L, Singer D, Stenøien HK, Tuittila E-S, Vellak K, Waddington JM, Granath G (2021) Environmental drivers of Sphagnum growth in peatlands across the Holarctic region. J Ecol 109:417–431

    Article  CAS  Google Scholar 

  • Bergamini A, Peintinger M, Fakheran S, Moradi H, Schmid B, Joshi J (2009) Loss of habitat specialists despite conservation management in fen remnants 1995–2006. Perspect Plant Ecol Evol Syst 11:65–79

    Article  Google Scholar 

  • Bragazza L, Buttler A, Siegenthalter A, Mitchell E (2008) Plant litter decomposition and nutrient release in peatlands. Baird AJ, Belyea LR, Comas X, Reeve AS, Slater LD, editors. AGU 184:99–110

    Google Scholar 

  • Cernohorsky N, Horsák M, Cameron RAD (2010) Land snail species richness and abundance at small scales: the effects of distinguishing between live individuals and empty shells. J Conchol 40:233–241

    Google Scholar 

  • Cornes R, van der Schrier G, van den Besselaar EJM, Jones PD (2018) An ensemble version of the E-OBS temperature and precipitation data sets. J Geophys Res Atmos 123:9391–9409

    Article  Google Scholar 

  • Courchesne DN, Wilson AZ, Ryser P (2020) Regional distribution patterns of wetland monocots with different root turnover strategies are associated with local variation in soil temperature. New Phytol 226:86–97

    Article  PubMed  Google Scholar 

  • Duval TP, Waddington JM, Branfireun BA (2012) Hydrological and biogeochemical controls on plant species distribution within calcareous fens. Ecohydrology 5:73–89

    Article  CAS  Google Scholar 

  • Essl F, Dullinger S, Moser D, Rabitsch W, Kleinbauer I (2012) Vulnerability of mires under climate change: implications for nature conservation and climate change adaptation. Biodiver Conserv 21:655–669

    Article  Google Scholar 

  • Euro+Med (2006) Euro+Med PlantBase - the information resource for Euro-Mediterranean plant diversity. Published on the Internet http://ww2.bgbm.org/EuroPlusMed/ [accessed 10–25–2021]

  • Fernández-Pascual E (2016) Comparative seed germination traits in bog and fen mire wetlands. Aquat Bot 130:21–26

    Article  Google Scholar 

  • Fernández-Pascual E, Correia-Álvarez E (2021) Mire microclimate: Groundwater buffers temperature in waterlogged versus dry soils. Int J Climatol 41:E2949–E2958

    Article  Google Scholar 

  • Fernández-Pascual E, Jiménez-Alfaro B, Díaz TE (2013) The temperature dimension of the seed germination niche in fen wetlands. Plant Ecol 214:489–499

    Article  Google Scholar 

  • Fernández-Pascual E, Jiménez-Alfaro B, Hájek M, Díaz TE, Pritchard HW (2015) Soil thermal buffer and regeneration niche may favour calcareous fen resilience to climate change. Fol Geobot 50:293–301

    Article  Google Scholar 

  • Glime JM (2020) Streams: Physiological Adaptations – Water, Light, and Temperature. Chapt. 2–6. In: Glime JM. Bryophyte Ecology. Volume 1. Habitat and Role. Ebook sponsored by Michigan Technological University and the International Association of Bryologists. Last updated 22 July 2020 and available at http://digitalcommons.mtu.edu/bryophyte-ecology/

  • Górecki K, Rastogi A, Stróżecki M, Gąbka M, Lamentowicz M, Łuców D, Kayzer D, Juszczak R (2021) Water table depth, experimental warming, and reduced precipitation impact on litter decomposition in a temperate Sphagnum-peatland. Sci Tot Environ 771:145452

    Article  Google Scholar 

  • Grootjans AP, van Tooren BF (1984) Ecological notes on Carex aquatilis communities. Vegetatio 57(2):79–89

  • Grootjans AP, Wołejko L, de Mars H, Smolders AJ, van Dijk G (2021) On the hydrological relationship between Petrifying-springs, Alkaline-fens, and Calcareous-spring-mires in the lowlands of North-West and Central Europe; consequences for restoration. Mires Peat 27:18p

    Google Scholar 

  • Hájek M, Hekera P, Hájková P (2002) Spring fen vegetation and water chemistry in the Western Carpathian flysch zone. Fol Geobot 37:205–224

    Article  Google Scholar 

  • Hájek M, Horsák M, Hájková P, Dítě D (2006) Habitat diversity of central European fens in relation to environmental gradients and an effort to standardise fen terminology in ecological studies. Perspect Plant Ecol Evol Syst 8:97–114

    Article  Google Scholar 

  • Hájek M, Horsák M, Tichý L, Hájková P, Dítě D, Jamrichová E (2011) Testing a relict distributional pattern of fen plant and terrestrial snail species at the Holocene scale: a null model approach. J Biogeogr 38:742–755

    Article  Google Scholar 

  • Hájek M, Hájková P, Kočí M, Jiroušek M, Mikulášková E, Kintrová K (2013) Do we need soil moisture measurements in the vegetation–environment studies in wetlands? J Veg Sci 24:127–137

    Article  Google Scholar 

  • Hájek M, Plesková Z, Syrovátka V, Peterka T, Laburdová J, Kintrová K, Jiroušek M, Hájek T (2014) Patterns in moss element concentrations in fens across species, habitats, and regions. Perspect Plant Ecol Evol Syst 16:203–218

    Article  Google Scholar 

  • Hájek M, Jiroušek M, Navrátilová J, Horodyská E, Peterka T, Plesková Z, Navrátil J, Hájková P, Hájek T (2015) Changes in the moss layer in Czech fens indicate early succession triggered by nutrient enrichment. Preslia 87:279–301

    Google Scholar 

  • Hájek M, Horsáková V, Hájková P, Coufal R, Dítě D, Němec T, Horsák M (2020) Habitat extremity and conservation management stabilise endangered calcareous fens in a changing world. Sci Tot Environ 719:134693

    Article  Google Scholar 

  • Hájek M, Jiménez-Alfaro B, Hájek O, Brancaleoni L, Cantonati M, Carbognani M, Dedić A, Dítě D, Gerdol R, Hájková P, Horsáková V, Jansen F, Kamberović J, Kapfer J, Kolari THM, Lamentowicz M, Lazarević P, Mašić E, Moeslund JE, Pérez-Haase A, Peterka T, Petraglia A, Pladevall-Izard E, Plesková Z, Segadelli S, Semeniuk Y, Singh P, Šímová A, Šmerdová E, Tahvanainen T, Tomaselli M, Vystavna Y, Biţă-Nicolae C, Horsák M (2021) A European map of groundwater pH and calcium. Earth Syst Sci Data 13:1089–1105

    Article  Google Scholar 

  • Hájek M, Těšitel J, Tahvanainen T, Peterka T, Jiménez-Alfaro B, Jansen F, Pérez-Haase A, Garbolino E, Carbognani M, Kolari THM, Hájková P, Jandt U, Aunina L, Pawlikowski P, Ivchenko T, Tomaselli M, Tichý L, Dítě D, Plesková Z, Mikulášková E (2022) Rising temperature modulates pH niches of fen species. Glob Chang Biol 28:1023–1037

    Article  PubMed  Google Scholar 

  • Hájková P, Wolf P, Hájek M (2004) Environmental factors and Carpathian spring fen vegetation: the importance of scale and temporal variation. Ann Bot Fenn 41:249–262

    Google Scholar 

  • He X, He KS, Hyvönen J (2016) Will bryophytes survive in a warming world? Perspect Plant Ecol Evol Syst 19:49–60

    Article  Google Scholar 

  • Higgins T, Colleran E, Raine R (2006) Transition from P-to N-limited phytoplankton growth in an artificial lake on flooded cutaway peatland in Ireland. Appl Veg Sci 9:223–230

    Article  Google Scholar 

  • Hodgetts NG, Söderström L, Blockeel TL, Caspari S, Ignatov MS, Konstantinova NA, Lockhart N, Papp B, Schröck C, Sim-Sim M, Bell D, Bell NE, Blom HH, Bruggeman-Nannenga MA, Brugués M, Enroth J, Flatberg KI, Garilleti R, Hedenäs L, Holyoak DT, Hugonnot V, Kariyawasam I, Köckinger H, Kučera J, Lara F, Porley RD (2020) An annotated checklist of bryophytes of Europe, Macaronesia and Cyprus. J Bryol 42:1–116

    Article  Google Scholar 

  • Horsák M (2003) How to sample mollusc communities in mires easily. Malacol Bohemoslov 2:11–14

    Article  Google Scholar 

  • Horsák M, Hájek M (2003) Composition and species richness of molluscan communities in relation to vegetation and water chemistry in the western Carpathian spring fens: the poor–rich gradient. J Moll Stud 69:349–357

    Article  Google Scholar 

  • Horsák M, Hájek M, Spitale D, Hájková P, Dítě D, Nekola JC (2012) The age of island-like habitats impacts habitat specialist species richness. Ecology 93:1106–1114

    Article  PubMed  Google Scholar 

  • Horsák M, Chytrý M, Axmanová I (2013a) Exceptionally poor land snail fauna of central Yakutia (NE Russia): climatic and habitat determinants of species richness. Polar Biol 36:185–191

    Article  Google Scholar 

  • Horsák M, Juřičková L, Picka J (2013b) Měkkýši České a Slovenské republiky. Molluscs of the Czech and Slovak Republics. Kabourek, Zlín, p 264

  • Horsák M, Rádková V, Syrovátka V, Bojková J, Křoupalová V, Schenková J, Zajacová J (2015) Drivers of aquatic macroinvertebrate richness in spring fens in relation to habitat specialization and dispersal mode. J Biogeogr 42:2112–2121

    Article  Google Scholar 

  • Horsák M, Polášková V, Zhai M, Bojková J, Syrovátka V, Šorfová V, Schenková J, Polášek M, Peterka T, Hájek M (2018) Spring-fen habitat islands in a warming climate: partitioning the effects of mesoclimate air and water temperature on aquatic and terrestrial biota. Sci Tot Environ 634:355–365

    Article  Google Scholar 

  • Horsák M, Horsáková V, Polášek M, Coufal R, Hájková P, Hájek M (2021) Spring water table depth mediates within-site variation of soil temperature in groundwater-fed mires. Hydrol Process 35:e14293

    Article  Google Scholar 

  • Horsáková V, Hájek M, Hájková P, Dítě D, Horsák M (2018) Principal factors controlling the species richness of European fens differ between habitat specialists and matrix-derived species. Divers Distrib 24:742–754

    Article  Google Scholar 

  • Jiroušek M, Poulíčková A, Kintrová K, Opravilová V, Hájková P, Rybníček K, Kočí M, Bergová K, Hnilica R, Mikulášková E, Králová Š, Hájek M (2013) Long-term and contemporary environmental conditions as determinants of the species composition of bog organisms. Freshw Biol 58:2196–2207

    Article  Google Scholar 

  • Joosten H, Clarke D (2002) Wise use of mires and peatlands. Devon: United Kingdom. International Mire Conservation Group and International Peat Society, 304

  • Joosten H, Tanneberger F, Moen A (Eds) (2017) Mires and Peatlands of Europe. Schweizerbart Science Publishers: Germany. 780p

  • Jyväsjärvi J, Marttila H, Rossi PM, Ala-Aho P, Olofsson B, Nisell J, Britschgi R (2015) Climate-induced warming imposes a threat to north European spring ecosystems. Glob Chang Biol 21:4561–4569

    Article  PubMed  Google Scholar 

  • Kano A, Matsuoka J, Kojo T, Fujii H (2003) Origin of annual laminations in tufa deposits, southwest Japan. Palaeogeogr Palaeoclimatol Palaeoecol 191:243–262

    Article  Google Scholar 

  • Kaspar TC, Bland WL (1992) Soil temperature and root growth. Soil Sci 154:290–290

    Article  Google Scholar 

  • Kooijman A, Paulissen MPCP (2006) Higher acidification rates in fens with phosphorus enrichment. Appl Veg Sci 9:205–212

    Article  Google Scholar 

  • Kurylyk BL, Bourque CA, MacQuarrie KT (2013) Potential surface temperature and shallow groundwater temperature response to climate change: an example from a small forested catchment in east-central New Brunswick (Canada). Hydrol Earth Syst Sci 17:2701–2716

    Article  Google Scholar 

  • Kurylyk BL, MacQuarrie KT, Voss CI (2014) Climate change impacts on the temperature and magnitude of groundwater discharge from shallow, unconfined aquifers. Water Resour Res 50:3253–3274

    Article  Google Scholar 

  • Küttim M, Laine AM, Küttim L, Ilomets M, Robroek BJ (2019) Winter climate change increases physiological stress in calcareous fen bryophytes. Sci Tot Environ 695:133867

    Article  Google Scholar 

  • Lamers LP, Vile MA, Grootjans AP, Acreman MC, van Diggelen R, Evans MG, Richardson CJ, Rochefort L, Kooijman AM, Roelofs JGM, Smolders AJ (2015) Ecological restoration of rich fens in Europe and North America: from trial and error to an evidence-based approach. Biol Rev 90:182–203

    Article  PubMed  Google Scholar 

  • Larsson J (2016) eulerr: Area-proportional Euler Diagrams R Package Version 1.0.0.  https://cran.r-project.org/package=eulerr

  • Martinez Arbizu P (2020) pairwiseAdonis: Pairwise multilevel comparison using adonis. R package version 0.4

  • Martínez-Abaigar J, Núñez-Olivera E (2018) Ecophysiology of photosynthetic pigments in aquatic bryophytes. Chapt. 18. In: Bates JW, Ashton NW, Duckett JG. Bryology for the Twenty-first Century

  • Martins RJ, Pardo R, Boaventura RA (2004) Cadmium (II) and zinc (II) adsorption by the aquatic moss Fontinalis antipyretica: Effect of temperature, pH and water hardness. Water Res 38:693–699

    Article  CAS  PubMed  Google Scholar 

  • Menberg K, Blum P, Kurylyk BL, Bayer P (2014) Observed groundwater temperature response to recent climate change. Hydrol Earth Syst Sci 18:4453–4466

    Article  Google Scholar 

  • Moradi H, Fakheran S, Peintinger M, Bergamini A, Schmid B, Joshi J (2012) Profiteers of environmental change in the Swiss Alps: increase of thermophilous and generalist plants in wetland ecosystems within the last 10 years. Alp Bot 122:45–56

    Article  Google Scholar 

  • Naimi B (2015) Usdm: uncertainty analysis for species distribution models. R package version 1.1–15. https://CRAN.Rproject.org/web/packages/usdm/usdm.pdf

  • Navrátilová J, Hájek M, Navrátil J, Hájková P, Frazier RJ (2017) Convergence and impoverishment of fen communities in a eutrophicated agricultural landscape of the Czech Republic. Appl Veg Sci 20:225–235

    Article  Google Scholar 

  • Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, O’Hara B, Simpson GL, Solymos P, Stevens MHH, Wagner H (2018) vegan: community ecology package. R package version 2.5–3. https://CRAN.r-project.org/web/packages/vegan/index.html

  • Pérez-Haase A, Ninot JM (2017) Hydrological heterogeneity rather than water chemistry explains the high plant diversity and uniqueness of a Pyrenean mixed mire. Fol Geobot 52:143–160

    Article  Google Scholar 

  • Raney PA, Leopold DJ, Dovciak M, Beier CM (2016) Hydrologic position mediates sensitivity of tree growth to climate: groundwater subsidies provide a thermal buffer effect in wetlands. For Ecol Manag 379:70–80

    Article  Google Scholar 

  • Říhová D, Janovský Z, Horsák M, Juřičková L (2018) Shell decomposition rates in relation to shell size and habitat conditions in contrasting types of Central European forests. J Molluscan Stud 84:54–61

    Article  Google Scholar 

  • Roberts WD (2019) labdsv: Ordination and multivariate analysis for ecology. R Package Version 2.0–1. https://CRAN.R-project.org/package=labdsv

  • Rull V (2009) Microrefugia. J Biogeogr 36:481–484

    Article  Google Scholar 

  • Ruosteenoja K, Markkanen T, Venäläinen A, Räisänen P, Peltola H (2018) Seasonal soil moisture and drought occurrence in Europe in CMIP5 projections for the 21st century. Clim Dyn 50(3):1177–1192

  • Rydin H, Jeglum JK (eds) (2006) The biology of peatlands. Oxford University Press, Oxford, p 360p

    Google Scholar 

  • Schenková V, Horsák M, Plesková Z, Pawlikowski P (2012) Habitat preferences and conservation of Vertigo geyeri (Gastropoda: Pulmonata) in Slovakia and Poland. J Molluscan Stud 78:105–111

    Article  Google Scholar 

  • Schenková J, Polášková V, Bílková M, Bojková J, Syrovátka V, Polášek M, Horsák M (2020) Climatically induced temperature instability of groundwater-dependent habitats will suppress cold adapted Clitellata species. Int Rev Hydrobiol 10:85–93

    Article  Google Scholar 

  • Sekulová L, Hájek M, Syrovátka V (2013) Vegetation–environment relationships in alpine mires of the West Carpathians and the Alps. J Veg Sci 24:1118–1128

    Article  Google Scholar 

  • Singh P, Těšitel J, Plesková Z, Peterka T, Hájková P, Dítě D, Pawlikowski P, Hájek M (2019) The ratio between bryophyte functional groups impacts vascular plants in rich fens. Appl Veg Sci 22:494–507

    Article  Google Scholar 

  • Soudzilovskaia NA, Cornelissen JHC, During HJ, Van Logtestijn RSP, Lang SI, Aerts R (2010) Similar cation exchange capacities among bryophyte species refute a presumed mechanism of peatland acidification. Ecology 91:2716–2726

    Article  CAS  PubMed  Google Scholar 

  • Spitale D (2021) A warning call from mires of the Southern Alps (Italy): Impacts which are changing the bryophyte composition. J Nat Conserv 61:125994

    Article  Google Scholar 

  • Stockmeier LA, Givnish TJ (2019) Plant distribution, stature, rarity, and diversity in a patterned calcareous fen: tests of geochemical and leaf-height models. Am J Bot 106:807–820

    Article  PubMed  Google Scholar 

  • Taylor RG, Scanlon B, Döll P, Rodell M, van Beek R, Wada Y, Longuevergne L, Leblanc M, Famiglietti JS, Edmunds M, Konikow L, Green TR, Chen J, Taniguchi M, Bierkens MFP, MacDonald A, Fan Y, Maxwell RM, Yechieli Y, Gurdak JJ, Allen DM, Shamsuddha M, Hiscock K, Yeh PJF, Holman TH (2013) Ground water and climate change. Nat Clim Chang 3:322–329

    Article  Google Scholar 

  • van der Maarel E (1979) Transformation of cover-abundance values in phytosociology and its effects on community similarity. Vegetatio 39:97–114

    Article  Google Scholar 

  • van Diggelen R, Middleton B, Bakker J, Grootjans A, Wassen M (2006) Fens and floodplains of the temperate zone: present status, threats, conservation and restoration. Appl Veg Sci 9:157–162

    Article  Google Scholar 

  • Vicherová E, Hájek M, Hájek T (2015) Calcium intolerance of fen mosses: physiological evidence, effects of nutrient availability and successional drivers. Perspect Plant Ecol Evol Syst 17:347–359

    Article  Google Scholar 

  • Wassen MJ, Joosten JHJ (1996) In search of a hydrological explanation for vegetation changes along a fen gradient in the Biebrza Upper Basin (Poland). Vegetatio 124:191–209

    Article  Google Scholar 

  • Welter-Schultes FW (2012) European Non-marine molluscs, a guide for species identification. Planet Poster Editions, Göttingen. 757 p

Download references

Acknowledgements

We would like to express our gratitude to Daniel Dítě and Petra Lovecká for their help with the fieldwork and to Michal Pavonič for chemical analyses. We are also grateful to Ondřej Hájek for creating the map and we thank to two anonymous reviewers for their comments that helped to improve our manuscript.

Funding

The research was supported by the Czech Science Foundation (19-01775S) and Petra Hájková was partially supported by the long-term developmental project of the Czech Academy of Sciences (RVO 67985939).

Author information

Authors and Affiliations

Authors

Contributions

Radovan Coufal: Writing – Original Draft, Data Curation, Investigation, Formal Analysis Petra Hájková: Investigation, Writing – Review & Editing Michal Hájek: Funding Acquisition, Investigation, Writing – Review & Editing Martin Jiroušek Data Curation, Investigation, Review & Editing Marek Polášek Data Curation, Review & Editing Veronika Horsáková: Writing – Review & Editing, Investigation Michal Horsák: Investigation, Writing – Review & Editing, Conceptualization, Supervision.

Corresponding author

Correspondence to Radovan Coufal.

Ethics declarations

Competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Responsible Editor: Luca Bragazza.

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Coufal, R., Hájková, P., Hájek, M. et al. Compositional variation of endangered spring fen biota reflects within-site variation in soil temperature. Plant Soil 485, 439–455 (2023). https://doi.org/10.1007/s11104-022-05841-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-022-05841-3

Keywords

Navigation