Skip to main content
Log in

Stable and unstable solutions in auto-parametric resonance zone of a non-holonomic system

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The aim of the study is to demonstrate a couple of special states which can be encountered at the system of a ball moving in a spherical cavity working as a passive tuned mass damper (TMD) of slender engineering structures. The system includes six degrees of freedom with three non-holonomic constraints being under horizontal additive kinematic excitation. The Appell–Gibbs approach is used to deduce the governing differential system. Uniaxial and biaxial types of kinematic excitation are considered. Among biaxial, a special attention is paid to circular setting. Influence of the rolling and spinning damping in contact of the ball with cavity is discussed. Under uniaxial excitation is the system auto-parametric and posses multiple solutions. The individual response branches can be identified when the excitation frequency is swept up or down with respect to setting up of initial conditions. Among stable branches reveal those with very low and sometimes zero approaching stability level. Although the accessibility of relevant trajectories is often very subtle due to effect of the dynamic stability, these post-critical phenomena accumulate a lot of energy. Hence, they can be very dangerous for TMD and other important engineering systems. Some general recommendations for practice are formulated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Arnold, V.: Mathematical Methods of Classical Mechanics. Springer, New York (1978)

    Book  Google Scholar 

  2. Aston, P.: Bifurcations of the horizontally forced spherical pendulum. Comput. Methods Appl. Mech. Eng. 170(3), 343–353 (1999). https://doi.org/10.1016/S0045-7825(98)00202-3

    Article  MathSciNet  MATH  Google Scholar 

  3. Baruh, H.: Analytical Dynamics. McGraw-Hill, New York (1998)

    Google Scholar 

  4. Desloge, E.: The Gibbs–Appell equation of motion. Am. J. Phys. 56(9), 841–846 (1988)

    Article  MathSciNet  Google Scholar 

  5. Dieci, L., Jolly, M.S., Vleck, E.S.V.: Numerical techniques for approximating Lyapunov exponents and their implementation. J. Comput. Nonlinear Dyn. 6(1), 011003–011007 (2011)

    Article  Google Scholar 

  6. Emami, M., Zohoor, H., Sohrabpour, S.: Solving high order nonholonomic systems using Gibbs–Appell method. In: Balan, V. (ed.) Proceedings of the International Conference Differential Geometry and Dynamical Systems, pp. 70–79. Geometry Balkan Press, Mangalia (2009)

  7. Galassi, M., Davies, J., Theiler, J., Gough, B., Jungman, G., Booth, M., Rossi, F.: GNU Scientific Library: Reference Manual, 3rd edn. Network Theory Ltd. (2009). http://www.gnu.org/software/gsl/. Accessed 10 Nov 2018

  8. Lee, W., Hsu, C.: A global analysis of an harmonically excited spring-pendulum system with internal resonance. J. Sound Vib. 171(3), 335–359 (1994)

    Article  MathSciNet  Google Scholar 

  9. Legeza, V.P.: Determination of the amplitude-frequency characteristic of the new roller damper for forced oscillations. J. Autom. Inf. Sci. 34(5–8), 32–39 (2002)

    Google Scholar 

  10. Legeza, V.P.: Rolling of a heavy ball in a spherical recess of a translationally moving body. Int. Appl. Mech. 38(6), 758–764 (2002). https://doi.org/10.1023/A:1020445215419

    Article  MathSciNet  MATH  Google Scholar 

  11. Leung, A.Y.T., Kuang, J.: On the chaotic dynamics of a spherical pendulum with a harmonically vibrating suspension. Nonlinear Dyn. 43, 213–238 (2006). https://doi.org/10.1007/s11071-006-7426-8

    Article  MathSciNet  MATH  Google Scholar 

  12. Lewis, A.: The geometry of the Gibbs–Appell equations and Gauss’s principle of least constraints. Rep. Math. Phys. 38(1), 11–28 (1996)

    Article  MathSciNet  Google Scholar 

  13. Lichtenberg, A., Lieberman, M.: Regular and Stochastic Motion. Springer, New York (1983)

    Book  Google Scholar 

  14. Lurie, A.: Analytical Mechanics. Foundations of Engineering Mechanics. Springer, Berlin Heidelberg (2002). https://doi.org/10.1007/978-3-540-45677-3

    Book  Google Scholar 

  15. Matta, E., De Stefano, A., Spencer Jr., B.: A new passive rolling-pendulum vibration absorber using a non-axial guide to achieve bidirectional tuning. Earthq. Eng. Struct. Dyn. 38, 1729–1750 (2009)

    Article  Google Scholar 

  16. Miles, J., Zhou, Q.P.: Parametric excitation of a detuned spherical pendulum. J. Sound Vib. 164(2), 237–250 (1993)

    Article  MathSciNet  Google Scholar 

  17. Neimark, J.I., Fufaev, N.A.: Dynamics of Nonholonomic Systems. Translations of Mathematical Monographs, vol. 33. AMS, Providence, Rhode Island (1972)

  18. Náprstek, J., Fischer, C.: Auto-parametric semi-trivial and post-critical response of a spherical pendulum damper. Comput. Struct. 87(19–20), 1204–1215 (2009)

    Article  Google Scholar 

  19. Náprstek, J., Fischer, C.: Dynamic response of a heavy ball rolling inside a spherical dish under external excitation. In: Zolotarev, I. (ed.) Proceedings of the Engineering Mechanics 2013, pp. 96–106. IT AS CR, Prague (2013). Paper #46

  20. Náprstek, J., Fischer, C.: Dynamic behavior and stability of a ball rolling inside a spherical surface under external excitation. In: Zingoni, A. (ed.) Insights and Innovations in Structural Engineering, Mechanics and Computation, pp. 214–219. Taylor & Francis, London (2016)

    Chapter  Google Scholar 

  21. Náprstek, J., Fischer, C.: Non-holonomic dynamics of a ball moving inside a spherical cavity. Procedia Eng. 199, 613–618 (2017)

    Article  Google Scholar 

  22. Náprstek, J., Fischer, C.: Appell–Gibbs approach in dynamics of non-holonomic systems. In: Reyhanoglu, M. (ed.) Nonlinear Systems, Chap. 1. IntechOpen, Rijeka (2018). https://doi.org/10.5772/intechopen.76258

    Chapter  Google Scholar 

  23. Náprstek, J., Fischer, C.: Singular solutions of a non-holonomic system as limits separating solution groups of particular type. MATEC Web Conf. 211, 04001 (2018). https://doi.org/10.1051/matecconf/201821104001

    Article  Google Scholar 

  24. Náprstek, J., Fischer, C., Pirner, M., Fischer, O.: Non-linear model of a ball vibration absorber. In: Papadrakakis, M., Fragiadakis, M., Plevris, V. (eds.) Computational Methods in Earthquake Engineering. Computational Methods in Applied Sciences, vol. 30. Springer, Dordrecht (2013). https://doi.org/10.1007/978-94-007-6573-3_18

    Google Scholar 

  25. Ott, E.: Chaos in Dynamical Systems. Cambridge University Press, Cambridge (1993)

    MATH  Google Scholar 

  26. Pars, L.: A Treatise on Analytical Dynamics, 2nd edn. Ox Bow Press, Connecticut (1972)

    MATH  Google Scholar 

  27. Pirner, M., Fischer, O.: The development of a ball vibration absorber for the use on towers. J. Int. Assoc. Shell Spatial Struct. 41(2), 91–99 (2000)

    Google Scholar 

  28. Pospíšil, S., Fischer, C., Náprstek, J.: Experimental and theoretical analysis of auto-parametric stability of pendulum with viscous dampers. Acta Tech. 56(4), 359–378 (2011)

    Google Scholar 

  29. Schuster, H.: Deterministic Chaos, second revised edition. VCH, Weinheim (1988)

    Google Scholar 

  30. Tondl, A., Ruijgrok, T., Verhulst, F., Nabergoj, R.: Autoparametric Resonance in Mechanical Systems. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  31. Tritton, D.J., Grooves, M.: Lyapunov exponents for the Miles’ spherical pendulum equations. Phys. D 126(1–2), 83–98 (1999). https://doi.org/10.1016/S0167-2789(98)00263-2

    Article  MathSciNet  MATH  Google Scholar 

  32. Udwadia, F., Kalaba, R.: The explicit Gibbs–Appell equation and generalized inverse forms. Q. Appl. Math. 56(2), 277–288 (1998)

    Article  MathSciNet  Google Scholar 

  33. Xu, Z., Cheung, Y.: Averaging method using generalized harmonic functions for strongly non-linear oscillators. J. Sound Vib. 174(4), 563–576 (1994)

    Article  MathSciNet  Google Scholar 

  34. Yong-Fen, Q.: Gibbs–Appell’s equations of variable mass nonlinear nonholonomic mechanical systems. Appl. Math. Mech. 11(10), 973–983 (1990). https://doi.org/10.1007/BF02115681

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The kind support of the Czech Science Foundation project No. 17-26353J and of the RVO 68378297 institutional support are gratefully acknowledged. Access to computing and storage facilities owned by parties and projects contributing to the National Grid Infrastructure MetaCentrum provided under the program “Projects of Large Research, Development, and Innovations Infrastructures” (CESNET LM2015042) is greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiří Náprstek.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Náprstek, J., Fischer, C. Stable and unstable solutions in auto-parametric resonance zone of a non-holonomic system. Nonlinear Dyn 99, 299–312 (2020). https://doi.org/10.1007/s11071-019-04948-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-019-04948-0

Keywords

Mathematics Subject Classification

Navigation