Skip to main content
Log in

Homogeneous nucleation and crystallization model of aluminum droplet based on isothermal DSC analysis

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The aluminum (Al) sample was studied using differential scanning calorimetry (DSC) at non-isothermal and isothermal conditions. The first non-isothermal measurements were performed by melting the Al sample and then cooling it down at rates 2 to \(-20\,^{\circ }\hbox {C}\) \(\hbox {min}^{-1}\) to detect the crystallization temperature \(\hbox {T}_{\text{C}}\) \(\approx\) \(642\,^{\circ }\hbox {C}\) (corresponding to undercooling \(\Delta\) \(\hbox {T}_{\text{C}}\) \(\approx\) \(18.3\,^{\circ }\hbox {C}\)). On the contrary, the crystallization event was repeatedly detected by the isothermal DSC after several tens of minutes at the temperature T \(\approx\) 653 to \(-654\,^{\circ }\hbox {C}\). Overall crystallization of the Al droplet (at \(\Delta\) T \(\approx\) 6.3 to \(-7.3\,^{\circ }\hbox {C}\)) was analyzed utilizing Johnson–Mehl–Avrami–Kolmogorov (JMAK) model. However, the Avrami coefficient \(n=d+1\), where d is the dimensionality of the growth, was less than 1, and thus, the JMAK model is not appropriate in some cases. In our model, we were focused predominantly on the nucleation kinetics under the assumption that crystallization of the Al droplet occurred by the homogeneous nucleation followed by the growth of nuclei. The surface energy of Al nuclei was estimated, and the kinetic equations of Al crystal nucleation were solved numerically, to determine the size distribution of nuclei and the nucleation rate. Numerical solution of kinetic nucleation equations showed that a decrease in Al atoms in the liquid droplet was predominantly a consequence of the formation of the subcritical clusters. The number of nuclei reached a quasi-stationary size distribution at a sufficiently long time, for which an analytical approach for the number of critical nuclei was determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Abraham FF. Homogeneous nucleation theory. New York: Academic Press; 1974.

    Google Scholar 

  2. Kashchiev D. Nucleation: basic theory with applications. Boston: Butterworth-Heimann; 2000.

    Google Scholar 

  3. Kožíšek Z, Demo P, Sveshnikov A. Kinetics of crystal nucleation in closed systems. In: Šesták J, Šimon P, editors. Thermal analysis of micro, nano- and non-crystalline materials. Hot topics in thermal analysis and calorimetry. Oxford: Springer; 2013.

    Google Scholar 

  4. Kožíšek Z, Koga T, Sato K, Demo P. Formation of n-alcohol crystallites from solution. J Chem Phys. 2001;114:7622–6. https://doi.org/10.1063/1.1361289.

    Article  CAS  Google Scholar 

  5. Kožíšek Z, Hikosaka M, Okada K, Demo P. Size distribution of folded chain crystal nuclei of polyethylene on active centers. J Chem Phys. 2011;134: 114904. https://doi.org/10.1063/1.3571457.

    Article  CAS  PubMed  Google Scholar 

  6. Thieme C, Erlebach A, Patzig C, Thieme K, Sierka M, öche T, Rüssel C. \(\text{ Wo}_3\) as a nucleating agent for BaO/SrO/ZnO/SiO\(_{2}\) glasses - experiments and simulations. Cryst Eng Comm. 2018;20:4565–74. https://doi.org/10.1039/C8CE00512E.

  7. Kožíšek Z. Crystallization in small droplets: competition between homogeneous and heterogeneous nucleation. J Cryst Growth. 2019;522:53–60. https://doi.org/10.1016/j.jcrysgro.2019.06.007.

    Article  CAS  Google Scholar 

  8. Haynes WM, Lide DR. CRC handbook of chemistry and physics: a ready-reference book of chemical and physical data. Boca Raton: CRC Press; 2009.

    Google Scholar 

  9. Avrami M. Kinetics of phase change. I general theory. J Chem Phys. 1939;7:1103–12. https://doi.org/10.1063/1.1750380.

    Article  CAS  Google Scholar 

  10. Avrami M. Kinetics of phase change. II transformation-time relations for random distribution of nuclei. J Chem Phys. 1940;8:212–24.

    Article  CAS  Google Scholar 

  11. Johnson WA, Mehl RF. Reaction kinetics in processes of nucleation and growth. Trans AIMME. 1939;135:416–58.

    Google Scholar 

  12. Kolmogorov A, Petrovskii I, Piskunov N. Study of a diffusion equation that is related to the growth of a quality of matter and its application to a biological problem. Mosc Univ Math Bull. 1937;1:1–26.

    Google Scholar 

  13. Levine LE, Narayan KL, Kelton KF. Finite size corrections for the Johnson-Mehl-Avrami-Kolmogorov equation. J Mater Res. 1997;12:124–32. https://doi.org/10.1557/JMR.1997.0020.

    Article  CAS  Google Scholar 

  14. Kadam SS, Kulkarni SA, Ribera RC, Stankiewicz AI, Ter Horst JH, Kramer HJM. A new view on the metastable zone width during cooling crystallization. Chem Eng Sci. 2012;72:10–9. https://doi.org/10.1016/j.ces.2012.01.002.

    Article  CAS  Google Scholar 

  15. Bokeloh J, Rozas RE, Horbach J, Wilde G. Nucleation barriers for the liquid-to-crystal transition in Ni: experiment and simulation. Phys Rev Lett. 2011;107: 145701. https://doi.org/10.1103/PhysRevLett.107.145701.

    Article  CAS  PubMed  Google Scholar 

  16. Kulkarni SA, Kadam SS, Meekes H, Stankiewicz AI, Ter Horst JH. Crystal nucleation kinetics from induction times and metastable zone widths. Cryst Growth Des. 2013;13(6):2435–40. https://doi.org/10.1021/cg400139t.

    Article  CAS  Google Scholar 

  17. Toschev S, Milchev A, Stoyanov S. On some probabilistic aspects of the nucleation process. J Cryst Growth. 1972;13(14):123–7. https://doi.org/10.1016/0022-0248(72)90073-5.

    Article  Google Scholar 

  18. Kožíšek Z. Crystal nucleation kinetics in confined systems. Cryst Eng Comm. 2013;152:2269–74. https://doi.org/10.1039/C2CE26497H.

    Article  Google Scholar 

  19. Kožíšek Z, Demo P. Homogeneous crystal nucleation in Ni droplets. J Cryst Growth. 2017;475:247–50. https://doi.org/10.1016/j.jcrysgro.2017.06.023.

    Article  CAS  Google Scholar 

  20. Yang B, Abyzov AS, Zhuravlev E, Gao Y, Schmelzer JWP, Shick C. Size and rate dependence of crystal nucleation in single tin drops by fast scanning calorimetry. J Chem Phys. 2013;138: 054501. https://doi.org/10.1063/1.4789447.

    Article  CAS  PubMed  Google Scholar 

  21. Kasap S, Málek J, Svoboda R. Thermal properties and thermal analysis: fundamentals, experimental techniques and applications. In: Kasap S, Capper P, editors. Springer handbook of electronic and photonic materials. Oxford: Springer; 2017.

    Chapter  Google Scholar 

  22. Šesták J, Holba P. Heat inertia and temperature gradient in the treatment of DTA peaks. J Therm Anal Calorim. 2013;113:1633–43. https://doi.org/10.1007/s10973-013-3025-3.

    Article  CAS  Google Scholar 

  23. Cárdenas-Leal JL, Barreda DG-G, Piñero M, Vázquez J. Dimensionality of the crystal growth, exponents of the power laws and activation energy for nucleation and growth processes in glass-crystal transformations under non-isothermal regime. Application to the crystallization of the \(\text{ Sb}_{0.13}\text{ As}_{0.35}\text{ Se}_{0.52}\) glassy semiconductor. Thermochim Acta. 2017;657:203–8.

  24. De Santis F, Pantani R. Nucleation density and growth rate of polypropylene measured by calorimetric experiments. J Therm Anal Calorim. 2013;112:1481–8. https://doi.org/10.1016/s0079-6700(99)00019-2.

    Article  CAS  Google Scholar 

  25. Fanfoni M, Tomellini M. The Johnson-Mehl-Avrami-Kohnogorov model: a brief review. Il Nuovo Cimento D. 1998;20:1171–82. https://doi.org/10.1007/BF03185527.

    Article  Google Scholar 

  26. Joraid AA, Al-Marweny AA, Al-Maghrabi MA. Particle size effects on the crystallization kinetics of chalcogenide \(\text{ Se}_{85}\)\(\text{ Te}_{10}\)\(\text{ Sb}_5\) glass. J Therm Anal Calorim. 2022;147:3633–45. https://doi.org/10.1007/s10973-021-10790-7.

  27. Ruitenberg G, Woldt E, Petford-Long AK. Comparing the Johnson-Mehl-Avrami-Kolmogorov equations for isothermal and linear heating conditions. Thermochim Acta. 2001;378:97–105. https://doi.org/10.1016/S0040-6031(01)00584-6.

    Article  CAS  Google Scholar 

  28. Weinberg MC, Birnie DP, Shneidman VA. Crystallization kinetics and the JMAK equation. J Non-Cryst Solids. 1997;219:89–99. https://doi.org/10.1016/S0022-3093(97)00261-5.

    Article  CAS  Google Scholar 

  29. Oxtoby DW, Kashchiev D. A general relation between the nucleation work and the size of the nucleus in multicomponent nucleation. J Chem Phys. 1994;100:7665–71. https://doi.org/10.1063/1.466859.

    Article  CAS  Google Scholar 

  30. Turnbull D, Fisher JC. Rate of nucleation in condensed systems. J Chem Phys. 1949;17:71–3. https://doi.org/10.1063/1.1747055.

    Article  CAS  Google Scholar 

  31. Courtney WG. Remarks on Homogeneous Nucleation. J Chem Phys. 1961;35:2249–50. https://doi.org/10.1063/1.1732252.

    Article  CAS  Google Scholar 

  32. Kožíšek Z, Demo P. Size distribution of nuclei formed by homogeneous nucleation in closed systems. J Aerosol Sci. 2009;40:44–54. https://doi.org/10.1016/j.jaerosci.2008.09.006.

    Article  CAS  Google Scholar 

  33. Zemenová P, Král R, Rodová M, Nitsch K, Nikl M. Calculations of Avrami exponent and applicability of Johnson-Mehl-Avrami model on crystallization in Er:LiY(\(PO_3\))\(_4\) phosphate glass. J Therm Anal Calorim. 2020;141:1091–9. https://doi.org/10.1007/s10973-019-09068-w.

  34. Vekilov PG. The two-step mechanism of nucleation of crystals in solution. Nanoscale. 2010;2:2346–57. https://doi.org/10.1039/C0NR00628A.

    Article  CAS  PubMed  Google Scholar 

  35. Tahri Y, Kožíšek Z, Gagnière E, Chabanon E, Bounahmidi T, Mangin D. Modeling the competition between polymorphic phases: highlights on the effect of Ostwald ripening. Cryst Growth Des. 2016;16:5689–97. https://doi.org/10.1021/acs.cgd.6b00640.

    Article  CAS  Google Scholar 

  36. Tahri Y, Gagnière E, Chabanon E, Bounahmidi T, Kožíšek Z, Candoni N, Veesler S, Boukerche M, Mangin D. Multiscale experimental study and modeling of l-Glutamic acid crystallization: emphasis on a kinetic explanation of the Ostwald rule of stages. Cryst Growth Des. 2019;19:3329–37. https://doi.org/10.1021/acs.cgd.9b00217.

    Article  CAS  Google Scholar 

  37. Sundareswaran S, Karuppannan S. Nucleation control and separation of vanillin polymorphs i and ii through the swift cooling crystallization process. Cryst Eng Comm. 2021;23:1634–42. https://doi.org/10.1039/D0CE01557A.

    Article  CAS  Google Scholar 

  38. Sun G, Xu J, Harrowell P. The mechanism of the ultrafast crystal growth of pure metals from their melts. Nat Mater. 2018;17: 881887. https://doi.org/10.1038/s41563-018-0174-6.

    Article  CAS  Google Scholar 

  39. Mahata A, Zaeem MA, Baskes MI. Understanding homogeneous nucleation in solidification of aluminum by molecular dynamics simulations. Model Simul Mat Sci Eng. 2018;26: 025007. https://doi.org/10.1088/1361-651x/aa9f3.

    Article  Google Scholar 

  40. Turnbull D. Formation of crystal nuclei in liquid metals. J Appl Phys. 1950;21:1022–8. https://doi.org/10.1063/1.1699435.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work is partially supported by Operational Programme Research, Development and Education financed by European Structural and Investment Funds and the Czech Ministry of Education, Youth and Sports (Project no. SOLID21 CZ.02.1.01/0.0/0.0/16\(\_\)019/0000760).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zdeněk Kožíšek.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kožíšek, Z., Král, R. & Zemenová, P. Homogeneous nucleation and crystallization model of aluminum droplet based on isothermal DSC analysis. J Therm Anal Calorim 147, 13089–13098 (2022). https://doi.org/10.1007/s10973-022-11497-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-022-11497-z

Keywords

Navigation