Skip to main content
Log in

Effect of amines on (peroxo)titanates: characterization and thermal decomposition

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

This report describes the thermal behaviour of nanotitania precursors and the influence of various amines and peroxide treatment on properties of TiO2. Thermal degradation of amine-containing amorphous (peroxo)titanates was examined via TG–DTA coupled with evolved gas analysis (EGA) by mass spectrometry in inert and oxidizing atmosphere. Crystallization to anatase and subsequent transformation to rutile are studied by in situ HT-XRD, which provided information about particle growth and mutual ratio between allotropic phases. In argon, the samples underwent a two-step degradation process, involving the release of moisture and decomposition or evaporation of amine, up to 450 °C, while in air conditions, the organic component could be oxidized in an additional third step at even higher temperatures. EGA confirmed the presence of the original amine in the amino-titanates, while the organic parts reacted with oxygen evolved from the peroxide group to form oxidation products (H2O, CO2 and NOx). The crystallization of nanoanatase began simultaneously/subsequently with the second degradation step. While peroxide treatment increased the initial particle size (from 5 to 40 nm), the choice of amine had a significant impact on the anatase formation temperature (325–425 °C). The anatase particle size increased with higher formation temperature after H2O2 treatment, while the particle size of amino-titanates decreased. The rutile formation temperature was directly dependent on the anatase particle size. Hitherto prepared amine-treated (peroxo)titanates demonstrated good thermal endurance of anatase nanoparticles (800–900 °C), which could be advantageous for various photocatalytic applications. The obtained results provide a method to synthetize tailored TiO2 with desired properties by adjusting the synthetic conditions (selection of precipitation agent and peroxide treatment) and annealing temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Braun JH, Baidins A, Marganski RE. TiO2 pigment technology: a review. Prog Org Coat. 1992;20(2):105–38. https://doi.org/10.1016/0033-0655(92)80001-D.

    Article  CAS  Google Scholar 

  2. Gesenhues U. Calcination of metatitanic acid to titanium dioxide white pigments. Chem Eng Technol. 2001;24(7):685–94.

    Article  CAS  Google Scholar 

  3. Fujishima A, Rao TN, Tryk DA. Titanium dioxide photocatalysis. J Photochem Photobiol, C. 2000;1(1):1–21. https://doi.org/10.1016/S1389-5567(00)00002-2.

    Article  CAS  Google Scholar 

  4. Liu G, Yang HG, Wang X, Cheng L, Pan J, Lu GQ, et al. Visible light responsive nitrogen doped anatase TiO2 sheets with dominant 001 facets derived from TiN. J Am Chem Soc. 2009;131(36):12868–9. https://doi.org/10.1021/ja903463q.

    Article  CAS  PubMed  Google Scholar 

  5. Zhang J, Zhu Z, Tang Y, Müllen K, Feng X. Titania nanosheet-mediated construction of a two-dimensional titania/cadmium sulfide heterostructure for high hydrogen evolution activity. Adv Mater. 2014;26(5):734–8. https://doi.org/10.1002/adma.201303571.

    Article  CAS  PubMed  Google Scholar 

  6. Manga KK, Zhou Y, Yan Y, Loh KP. Multilayer hybrid films consisting of alternating graphene and titania nanosheets with ultrafast electron transfer and photoconversion properties. Adv Func Mater. 2009;19(22):3638–43. https://doi.org/10.1002/adfm.200900891.

    Article  CAS  Google Scholar 

  7. Etacheri V, Seery MK, Hinder SJ, Pillai SC. Oxygen rich titania: a dopant free, high temperature stable, and visible-light active anatase photocatalyst. Adv Func Mater. 2011;21(19):3744–52. https://doi.org/10.1002/adfm.201100301.

    Article  CAS  Google Scholar 

  8. Bessekhouad Y, Robert D, Weber JV. Synthesis of photocatalytic TiO2 nanoparticles: optimization of the preparation conditions. J Photochem Photobiol, A. 2003;157(1):47–53. https://doi.org/10.1016/S1010-6030(03)00077-7.

    Article  CAS  Google Scholar 

  9. Schneider J, Matsuoka M, Takeuchi M, Zhang J, Horiuchi Y, Anpo M, et al. Understanding TiO2 photocatalysis: mechanisms and materials. Chem Rev. 2014;114(19):9919–86. https://doi.org/10.1021/cr5001892.

    Article  CAS  PubMed  Google Scholar 

  10. Lazar M, Varghese S, Nair SS. Photocatalytic water treatment by titanium dioxide: recent updates. Catalysts. 2012;2:572–601. https://doi.org/10.3390/catal2040572.

    Article  CAS  Google Scholar 

  11. Valdés Á, Brillet J, Grätzel M, Gudmundsdóttir H, Hansen HA, Jónsson H, et al. Solar hydrogen production with semiconductor metal oxides: new directions in experiment and theory. Phys Chem Chem Phys. 2012;14(1):49–70. https://doi.org/10.1039/C1CP23212F.

    Article  PubMed  Google Scholar 

  12. Jayashree S, Meiyazhagan A. Switchable intrinsic defect chemistry of titania for catalytic applications. Catalysts. 2018;8:601. https://doi.org/10.3390/catal8120601.

    Article  CAS  Google Scholar 

  13. Kavan L, Vlckova Zivcova Z, Zlamalova M, Zakeeruddin SM, Grätzel M. Electron-selective layers for dye-sensitized solar cells based on TiO2 and SnO2. J Phys Chem C. 2020;124(12):6512–21. https://doi.org/10.1021/acs.jpcc.9b11883.

    Article  CAS  Google Scholar 

  14. Civiš S, Ferus M, Knížek A, Kubelík P, Kavan L, Zukalová M. Photocatalytic transformation of CO2 to CH4 and CO on acidic surface of TiO2 anatase. Opt Mater. 2016;56:80–3. https://doi.org/10.1016/j.optmat.2015.11.015.

    Article  CAS  Google Scholar 

  15. Klementová M, Motlochová M, Boháček J, Kupčík J, Palatinus L, Pližingrová E, et al. Metatitanic acid pseudomorphs after titanyl sulfates: nanostructured sorbents and precursors for crystalline titania with desired particle size and shape. Cryst Growth Des. 2017;17(12):6762–9. https://doi.org/10.1021/acs.cgd.7b01349.

    Article  CAS  Google Scholar 

  16. Motlochová M, Slovák V, Pližingrová E, Lidin S, Šubrt J. Highly-efficient removal of Pb(ii), Cu(ii) and Cd(ii) from water by novel lithium, sodium and potassium titanate reusable microrods. RSC Adv. 2020;10(7):3694–704. https://doi.org/10.1039/C9RA08737K.

    Article  Google Scholar 

  17. Šubrt J, Pulišová P, Boháček J, Bezdička P, Pližingrová E, Volfová L, et al. Highly photoactive 2D titanium dioxide nanostructures prepared from lyophilized aqueous colloids of peroxo-polytitanic acid. Mater Res Bull. 2014;49:405–12. https://doi.org/10.1016/j.materresbull.2013.09.028.

    Article  CAS  Google Scholar 

  18. Pližingrová E, Volfová L, Svora P, Labhsetwar NK, Klementová M, Szatmáry L, et al. Highly photoactive anatase foams prepared from lyophilized aqueous colloids of peroxo-polytitanic acid. Catal Today. 2015;240:107–13. https://doi.org/10.1016/j.cattod.2014.04.022.

    Article  CAS  Google Scholar 

  19. Šubrt J, Pližingrová E, Palkovská M, Boháček J, Klementová M, Kupčík J, et al. Titania aerogels with tailored nano and microstructure: comparison of lyophilization and supercritical drying. Pure Appl Chem. 2017. https://doi.org/10.1515/pac-2016-1031.

    Article  Google Scholar 

  20. Pližingrová E, Klementová M, Bezdička P, Boháček J, Barbieriková Z, Dvoranová D, et al. 2D-Titanium dioxide nanosheets modified with Nd, Ag and Au: preparation, characterization and photocatalytic activity. Catal Today. 2017;281:165–80. https://doi.org/10.1016/j.cattod.2016.08.013.

    Article  CAS  Google Scholar 

  21. Barbieriková Z, Pližingrová E, Motlochová M, Bezdička P, Boháček J, Dvoranová D, et al. N-Doped titanium dioxide nanosheets: preparation, characterization and UV/visible-light activity. Appl Catal B. 2018;232:397–408. https://doi.org/10.1016/j.apcatb.2018.03.053.

    Article  CAS  Google Scholar 

  22. Ryu YB, Lee MS, Jeong ED, Kim HG, Jung WY, Baek SH, et al. Hydrothermal synthesis of titanium dioxides from peroxotitanate solution using different amine group-containing organics and their photocatalytic activity. Catal Today. 2007;124(3):88–93. https://doi.org/10.1016/j.cattod.2007.03.027.

    Article  CAS  Google Scholar 

  23. Piquemal J-Y, Briot E, Brégeault J-M. Preparation of materials in the presence of hydrogen peroxide: from discrete or “zero-dimensional” objects to bulk materials. Dalton Trans. 2013;42(1):29–45. https://doi.org/10.1039/c2dt31660a.

    Article  CAS  PubMed  Google Scholar 

  24. Ayers MR, Hunt AJ. Titanium oxide aerogels prepared from titanium metal and hydrogen peroxide. Mater Lett. 1998;34(3):290–3. https://doi.org/10.1016/S0167-577X(97)00181-X.

    Article  CAS  Google Scholar 

  25. Wu J-M, Hayakawa S, Tsuru K, Osaka A. Porous titania films prepared from interactions of titanium with hydrogen peroxide solution. Scripta Mater. 2002;46(1):101–6. https://doi.org/10.1016/S1359-6462(01)01207-6.

    Article  CAS  Google Scholar 

  26. Jere GV, Patel CC. The thermal stability of hydrated titanium peroxide and of some peroxy titanium compounds. J Inorg Nucl Chem. 1961;20(3–4):343–4. https://doi.org/10.1016/0022-1902(61)80286-8.

    Article  CAS  Google Scholar 

  27. Sahel K, Elsellami L, Mirali I, Dappozze F, Bouhent M, Guillard C. Hydrogen peroxide and photocatalysis. Appl Catal B. 2016;188:106–12. https://doi.org/10.1016/j.apcatb.2015.12.044.

    Article  CAS  Google Scholar 

  28. Wang Z-c, Chen J-f, Hu X-f. Preparation of nanocrystalline TiO2 powders at near room temperature from peroxo-polytitanic acid gel. Mater Lett. 2000;43(3):87–90. https://doi.org/10.1016/S0167-577X(99)00236-0.

    Article  CAS  Google Scholar 

  29. Bessekhouad Y, Robert D, Weber JV. Preparation of TiO2 nanoparticles by sol-gel route. Int J Photoenergy. 2003;5(3):153–8. https://doi.org/10.1155/s1110662x03000278.

    Article  CAS  Google Scholar 

  30. Li Y, Yu Y, Wu L, Zhi J. Processable polyaniline/titania nanocomposites with good photocatalytic and conductivity properties prepared via peroxo-titanium complex catalyzed emulsion polymerization approach. Appl Surf Sci. 2013;273:135–43. https://doi.org/10.1016/j.apsusc.2013.01.213.

    Article  CAS  Google Scholar 

  31. Hanaor DAH, Sorrell CC. Review of the anatase to rutile phase transformation. J Mater Sci. 2011;46(4):855–74. https://doi.org/10.1007/s10853-010-5113-0.

    Article  CAS  Google Scholar 

  32. Matthews A. The crystallization of anatase and rutile from amorphous titanium dioxide under hydrothermal conditions. Am Miner. 1976;61(5–6):419–24.

    CAS  Google Scholar 

  33. Pelaez M, Baruwati B, Varma RS, Luque R, Dionysiou DD. Microcystin-LR removal from aqueous solutions using a magnetically separable N-doped TiO2 nanocomposite under visible light irradiation. Chem Commun. 2013;49(86):10118–20. https://doi.org/10.1039/C3CC44415E.

    Article  CAS  Google Scholar 

  34. Jagadale TC, Takale SP, Sonawane RS, Joshi HM, Patil SI, Kale BB, et al. N-Doped TiO2 nanoparticle based visible light photocatalyst by modified peroxide sol−gel method. J Phys Chem C. 2008;112(37):14595–602. https://doi.org/10.1021/jp803567f.

    Article  CAS  Google Scholar 

  35. Zhang H, Lv X, Li Y, Wang Y, Li J. P25-graphene composite as a high performance photocatalyst. ACS Nano. 2010;4(1):380–6. https://doi.org/10.1021/nn901221k.

    Article  CAS  PubMed  Google Scholar 

  36. Zakharova GS, Andreikov EI. Effect of the precursor heat treatment procedure on the properties of titania photocatalysts. Inorg Mater. 2012;48(7):727–31. https://doi.org/10.1134/s0020168512070199.

    Article  CAS  Google Scholar 

  37. Tengvall P, Bertilsson L, Liedberg B, Elwing H, Lundström I. Degradation of dried Ti-peroxy gels made from metallic titanium and hydrogen peroxide. J Colloid Interface Sci. 1990;139(2):575–80. https://doi.org/10.1016/0021-9797(90)90131-7.

    Article  CAS  Google Scholar 

  38. Krivtsov I, Ilkaeva M, Avdin V, Amghouz Z, Khainakov SA, García JR, et al. Exceptional thermal stability of undoped anatase TiO2 photocatalysts prepared by a solvent-exchange method. RSC Adv. 2015;5(46):36634–41. https://doi.org/10.1039/c5ra01114k.

    Article  CAS  Google Scholar 

  39. Chemseddine A, Moritz T. Nanostructuring titania: control over nanocrystal structure. Size Shape Organ. 1999;1999(2):235–45.

    Google Scholar 

  40. Sugimoto T, Zhou X, Muramatsu A. Synthesis of uniform anatase TiO2 nanoparticles by gel–sol method: 4. Shape control. J Colloid Interface Sci. 2003;259(1):53–61. https://doi.org/10.1016/S0021-9797(03)00035-3.

    Article  CAS  PubMed  Google Scholar 

  41. Colón G, Hidalgo MC, Navío JA, Melián EP, Díaz OG, Doña JM. Influence of amine template on the photoactivity of TiO2 nanoparticles obtained by hydrothermal treatment. Appl Catal B. 2008;78(1):176–82. https://doi.org/10.1016/j.apcatb.2007.09.019.

    Article  CAS  Google Scholar 

  42. Pérez-Maqueda LA, Matijević E. Preparation and characterization of nanosized zirconium (hydrous) oxide particles. J Mater Res. 1997;12(12):3286–92. https://doi.org/10.1557/JMR.1997.0432.

    Article  Google Scholar 

  43. Palkovská M, Slovák V, Šubrt J, Boháček J, Havlín J. Thermal decomposition of a peroxopolytitanic acid cryogel: TA/MS study. Thermochim Acta. 2017;647:1–7. https://doi.org/10.1016/j.tca.2016.11.009.

    Article  CAS  Google Scholar 

  44. Xcalibur Data Acquisition and Processing, Thermo Fisher Scientific Inc., (Software version 3.0) 6/2013.

  45. NIST/EPA/NIH Mass Spectral Library with NIST Mass Spectral Search Program (Software version 2.0) 2001.

  46. ICDD (2019). PDF-4+ 2020. International Centre for Diffraction Data, Newton Square, PA, USA.

  47. ICSD database, FIZ Karlsruhe, Germany, release 2019/2, 2019.

  48. Dandge DK, Heller JP, Wilson KV. Structure solubility correlations: organic compounds and dense carbon dioxide binary systems. Ind Eng Chem Prod Res Dev. 1985;24(1):162–6. https://doi.org/10.1021/i300017a030.

    Article  CAS  Google Scholar 

  49. Bach RD, Su M-D, Schlegel HB. Oxidation of amines and sulfides with hydrogen peroxide and alkyl hydrogen peroxide the nature of the oxygen-transfer step. J Am Chem Soc. 1994;116(12):5379–91. https://doi.org/10.1021/ja00091a049.

    Article  CAS  Google Scholar 

  50. Lee CK, Kim DK, Lee JH, Sung JH, Kim I, Lee KH, et al. Preparation and characterization of peroxo titanic acid solution using TiCl3. J Sol-Gel Sci Technol. 2004;31(1):67–72. https://doi.org/10.1023/B:JSST.0000047962.82603.d9.

    Article  CAS  Google Scholar 

  51. Kim GH, Lee CG, Kim I. Properties of TiO2 film prepared from titanium tetrachloride. Met Mater Int. 2004;10(5):423–7. https://doi.org/10.1007/bf03027343.

    Article  CAS  Google Scholar 

  52. Pulišová P, Boháček J, Šubrt J, Szatmáry L, Bezdička P, Večerníková E, et al. Thermal behaviour of titanium dioxide nanoparticles prepared by precipitation from aqueous solutions. J Therm Anal Calorim. 2010;101(2):607–13. https://doi.org/10.1007/s10973-010-0893-7.

    Article  CAS  Google Scholar 

  53. Gil-González E, Perejón A, Sánchez-Jiménez PE, Medina-Carrasco S, Kupčík J, Šubrt J, et al. Crystallization kinetics of nanocrystalline materials by combined X-ray diffraction and differential scanning calorimetry experiments. Cryst Growth Des. 2018;18(5):3107–16. https://doi.org/10.1021/acs.cgd.8b00241.

    Article  CAS  Google Scholar 

  54. Valverde JM, Perejon A, Medina S, Perez-Maqueda LA. Thermal decomposition of dolomite under CO2: insights from TGA and in situ XRD analysis. Phys Chem Chem Phys. 2015;17(44):30162–76. https://doi.org/10.1039/C5CP05596B.

    Article  CAS  PubMed  Google Scholar 

  55. Jiménez de Haro MC, Pérez-Rodríguez JL, Poyato J, Pérez-Maqueda LA, Ramírez-Valle V, Justo A, et al. Effect of ultrasound on preparation of porous materials from vermiculite. Appl Clay Sci. 2005;30(1):11–20. https://doi.org/10.1016/j.clay.2005.02.004.

    Article  CAS  Google Scholar 

  56. Fernández-García M, Wang X, Belver C, Hanson JC, Rodriguez JA. Anatase-TiO2 nanomaterials: morphological/size dependence of the crystallization and phase behavior phenomena. J Phys Chem C. 2007;111(2):674–82. https://doi.org/10.1021/jp065661i.

    Article  CAS  Google Scholar 

  57. Hidalgo MC, Aguilar M, Maicu M, Navío JA, Colón G. Hydrothermal preparation of highly photoactive TiO2 nanoparticles. Catal Today. 2007;129(1):50–8. https://doi.org/10.1016/j.cattod.2007.06.053.

    Article  CAS  Google Scholar 

  58. Diker H, Varlikli C, Mizrak K, Dana A. Characterizations and photocatalytic activity comparisons of N-doped nc-TiO2 depending on synthetic conditions and structural differences of amine sources. Energy. 2011;36(2):1243–54. https://doi.org/10.1016/j.energy.2010.11.020.

    Article  CAS  Google Scholar 

  59. Pal M, García Serrano J, Santiago P, Pal U. Size-controlled synthesis of spherical TiO2 nanoparticles: morphology, crystallization, and phase transition. J Phys Chem C. 2007;111(1):96–102. https://doi.org/10.1021/jp0618173.

    Article  CAS  Google Scholar 

  60. Shannon RD, Pask JA. Kinetics of the anatase-rutile transformation. J Am Ceram Soc. 1965;48(8):391–8. https://doi.org/10.1111/j.1151-2916.1965.tb14774.x.

    Article  CAS  Google Scholar 

  61. Gouma PI, Mills MJ. Anatase-to-rutile transformation in titania powder . J Am Ceram Soc. 2001;84(3):619–22. https://doi.org/10.1111/j.1151-2916.2001.tb00709.x.

    Article  CAS  Google Scholar 

  62. Chopra GS, Real C, Alcalá MD, Pérez-Maqueda LA, Subrt J, Criado JM. Factors influencing the texture and stability of maghemite obtained from the thermal decomposition of lepidocrocite. Chem Mater. 1999;11(4):1128–37. https://doi.org/10.1021/cm981062f.

    Article  CAS  Google Scholar 

  63. Perego C, Revel R, Durupthy O, Cassaignon S, Jolivet J-P. Thermal stability of TiO2-anatase: impact of nanoparticles morphology on kinetic phase transformation. Solid State Sci. 2010;12(6):989–95. https://doi.org/10.1016/j.solidstatesciences.2009.07.021.

    Article  CAS  Google Scholar 

  64. Huo Z, Xu X, Lv Z, Song J, He M, Li Z, et al. Thermal study of NaP zeolite with different morphologies. J Therm Anal Calorim. 2013;111(1):365–9. https://doi.org/10.1007/s10973-012-2301-y.

    Article  CAS  Google Scholar 

  65. Kök M, Ata Ş, Yakıncı ZD, Aydoğdu Y. Examination of phase changes in the CuAl high-temperature shape memory alloy with the addition of a third element. J Therm Anal Calorim. 2018;133(2):845–50. https://doi.org/10.1007/s10973-018-7176-0.

    Article  CAS  Google Scholar 

  66. Su D, Huang M, Zhang J, Guo X, Chen J, Xue Y, et al. High N-doped hierarchical porous carbon networks with expanded interlayers for efficient sodium storage. Nano Res. 2020;13(10):2862–8. https://doi.org/10.1007/s12274-020-2944-0.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the assistance provided by the Research Infrastructure NanoEnviCz, supported by the Ministry of Education, Youth and Sports of the Czech Republic under Project No. LM2018124 and by the Grant Agency of the Czech Republic, project GA18-26297S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bára Komárková.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Komárková, B., Motlochová, M., Slovák, V. et al. Effect of amines on (peroxo)titanates: characterization and thermal decomposition. J Therm Anal Calorim 147, 5009–5022 (2022). https://doi.org/10.1007/s10973-021-10925-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-021-10925-w

Keywords

Navigation